skip to main content


Title: A tunable Electrostatic MEMS Pressure Switch
We demonstrate a tunable air pressure switch. The switch detects when the ambient pressure drops below a threshold value and automatically triggers without the need for any computational overhead to read the pressure or trigger the switch. The switch exploits the significant fluid interaction of a MEMS beam undergoing a large oscillation from electrostatic levitation to detect changes in ambient pressure. If the oscillation amplitude near the resonant frequency is above a threshold level, dynamic pull-in is triggered and the switch is closed. The pressure at which the switch closes can be tuned by adjusting the voltage applied to the switch. The use of electrostatic levitation allows the device to be released from their pulled-in position and reused many times without mechanical failure. A theoretical model is derived and validated with experimental data. It is experimentally demonstrated that the pressure switching mechanism is feasible.  more » « less
Award ID(s):
1608692
PAR ID:
10127762
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Industrial Electronics
ISSN:
0278-0046
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, a combined threshold pressure sensor and switch is introduced. The sensor detects when the pressure drops below a threshold value and automatically triggers a switch without the need for any computational overhead to read the pressure or trigger the switch. This system exploits the significant fluid interaction of a MEMS beam undergoing a large oscillation from electrostatic levitation to detect changes in ambient pressure. The levitation electrode configuration is combined with a parallel-plate system by adding an extra voltage to an electrode that is traditionally grounded, giving the system the ability to simultaneously act as a switch by toggling to and from the pulled-in position. It is experimentally demonstrated that the pressure sensing/switching mechanism is feasible and the threshold pressure to trigger the switch can be controlled by adjusting the voltage applied to the switch electrode. 
    more » « less
  2. This study illustrates the concept of threshold pressure sensing using the parametric resonance of an electrostatic levitation mechanism. The electrostatic levitation allows the oscillations in the opposite direction of the substrate, thereby not limited to small gaps. The pressure sensor detects the pressure drop below a threshold value by triggering the parametric resonance with significant peak to peak dynamic amplitude changes (~ 25 𝝁𝒎). This detection relies on the fact that the instability region expands when the pressure drop forces the amplitude jump up to the higher oscillation branch. This significant change in the resonator amplitude can be related to a large capacitance variation indicating the threshold pressure. A mathematical model of the resonator is presented to show the working principle of the sensor through frequency response. Our experimental results show that the threshold pressure the sensor detects, can be adjusted by the AC voltage it receives. 
    more » « less
  3. In this paper a novel electrostatic MEMS combined shock sensor and normally-closed switch is presented. The switch uses combined attractive and repulsive forcing to toggle a cantilever beam to and from the pulled-in position. The attractive force is generated through a parallel plate electrode configuration and induces pull-in. The repulsive force is generated through electrostatic levitation from a third electrode and serves to pull the beam out of its pulled-in position. A triboelectric transducer converts impact energy to electrical energy to provide voltage for the third electrode, which temporarily opens the switch if enough impact energy is supplied. Triboelectricity addresses the high voltage requirement for electrostatic levitation. The multi-electrode sensor also addresses the low current output from the generator because it acts as an open circuit between the parallel plate and levitation electrodes. A theoretical model of the switch is derived to analyze stability and the dynamic response of the cantilever. Threshold voltages to pull-in and release the beam through repulsive forcing is calculated. Output voltage plots from a prototype generator under a single impact are applied to the sensor-switch model to demonstrate the working principle of the sensor-switch is feasible. 
    more » « less
  4. n/a (Ed.)
    Abstract

    The dynamics of levitated liquid droplets can be used to measure their thermophysical properties by correlating the frequencies at which normal modes of oscillation most strongly resonate when subject to an external oscillatory force. In two preliminary works, it was shown via electrostatic levitation and processing of various metals and alloys that (1) the resonance of the first principal mode of oscillation (moden = 2) can be used to accurately measure surface tension and (2) that so-called “higher-order resonance” ofn = 3 is observable at a predictable frequency. It was also shown, in the context of future space-based experimentation on the Electrostatic Levitation Furnace (ELF), a setup on the International Space Station (ISS) operated by Japan Aerospace Exploration Agency (JAXA), that while the shadow array method in which droplet behavior is visualized would be challenging to identify then = 3 resonance, the normal moden = 4 was predicted to be more easily identifiable. In this short communication, experimental evidence of the first three principal modes of oscillation is provided using molten samples of Tin and Indium and it is subsequently shown that, as predicted, an “image-less approach can be used to identify bothn = 2 andn = 4 resonances in levitated liquid droplets. This suggests that the shadow array method may be satisfactorily used to obtain a self-consistent benchmark of thermophysical properties by comparing results from two successive even-mode natural frequencies.

     
    more » « less
  5. Abstract In this study, a two-step experimental procedure is described to determine the electrostatic levitation force in micro-electromechanical system transducers. In these two steps, the microstructure is excited quasi-statically and dynamically and its response is used to derive the electrostatic force. The experimental results are obtained for a 1 mm by 1 mm plate that employs 112 levitation units. The experimentally obtained force is used in a lumped parameter model to find the microstructure response when it is subjected to different dynamical loads. The natural frequency and the damping ratios in the model are identified from the experimental results. The results show that this procedure can be used as a method to extract the electrostatic force as a function of the microstructure’s degrees-of-freedom. The procedure can be easily used for any microstructure with a wide variety of electrode configurations to predict the response of the system to any input excitation. 
    more » « less