skip to main content


Title: Experimental Characterization of the Electrostatic Levitation Force in MEMS Transducers
Abstract In this study, a two-step experimental procedure is described to determine the electrostatic levitation force in micro-electromechanical system transducers. In these two steps, the microstructure is excited quasi-statically and dynamically and its response is used to derive the electrostatic force. The experimental results are obtained for a 1 mm by 1 mm plate that employs 112 levitation units. The experimentally obtained force is used in a lumped parameter model to find the microstructure response when it is subjected to different dynamical loads. The natural frequency and the damping ratios in the model are identified from the experimental results. The results show that this procedure can be used as a method to extract the electrostatic force as a function of the microstructure’s degrees-of-freedom. The procedure can be easily used for any microstructure with a wide variety of electrode configurations to predict the response of the system to any input excitation.  more » « less
Award ID(s):
1608692
PAR ID:
10169414
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Vibration and Acoustics
Volume:
142
Issue:
4
ISSN:
1048-9002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a slowly condensing droplet levitating near the surface of an evaporating layer, and develop a mathematical model to describe diffusion, heat transfer and fluid flow in the system. The method of separation of variables in bipolar coordinates is used to obtain the series expansions for temperature, vapour concentration and the Stokes stream function. This framework allows us to determine temperature profiles and condensation rates at the surface of the droplet, and to calculate the upward force that allows the droplet to levitate. Somewhat counter-intuitively, condensation is found to be the strongest near the bottom of the droplet, which faces the hot liquid layer. The experimentally observed deviations from the classical law predicting the square of the radius to grow linearly in time are explained by the model. A spatially non-uniform phase change rate results in a contribution to the force not considered in previous studies, and comparable to droplet weight and the upward force calculated from the Stokes drag law. The levitation conditions are formulated accordingly, resulting in the prediction of levitation height as a function of droplet size without any fitting parameters. A simple criterion is formulated to define the parameter ranges in which levitation is possible. The results are in good agreement with the experimental data except that the model tends to slightly underpredict the levitation height. 
    more » « less
  2. n/a (Ed.)
    Abstract

    The dynamics of levitated liquid droplets can be used to measure their thermophysical properties by correlating the frequencies at which normal modes of oscillation most strongly resonate when subject to an external oscillatory force. In two preliminary works, it was shown via electrostatic levitation and processing of various metals and alloys that (1) the resonance of the first principal mode of oscillation (moden = 2) can be used to accurately measure surface tension and (2) that so-called “higher-order resonance” ofn = 3 is observable at a predictable frequency. It was also shown, in the context of future space-based experimentation on the Electrostatic Levitation Furnace (ELF), a setup on the International Space Station (ISS) operated by Japan Aerospace Exploration Agency (JAXA), that while the shadow array method in which droplet behavior is visualized would be challenging to identify then = 3 resonance, the normal moden = 4 was predicted to be more easily identifiable. In this short communication, experimental evidence of the first three principal modes of oscillation is provided using molten samples of Tin and Indium and it is subsequently shown that, as predicted, an “image-less approach can be used to identify bothn = 2 andn = 4 resonances in levitated liquid droplets. This suggests that the shadow array method may be satisfactorily used to obtain a self-consistent benchmark of thermophysical properties by comparing results from two successive even-mode natural frequencies.

     
    more » « less
  3. In this paper a novel electrostatic MEMS combined shock sensor and normally-closed switch is presented. The switch uses combined attractive and repulsive forcing to toggle a cantilever beam to and from the pulled-in position. The attractive force is generated through a parallel plate electrode configuration and induces pull-in. The repulsive force is generated through electrostatic levitation from a third electrode and serves to pull the beam out of its pulled-in position. A triboelectric transducer converts impact energy to electrical energy to provide voltage for the third electrode, which temporarily opens the switch if enough impact energy is supplied. Triboelectricity addresses the high voltage requirement for electrostatic levitation. The multi-electrode sensor also addresses the low current output from the generator because it acts as an open circuit between the parallel plate and levitation electrodes. A theoretical model of the switch is derived to analyze stability and the dynamic response of the cantilever. Threshold voltages to pull-in and release the beam through repulsive forcing is calculated. Output voltage plots from a prototype generator under a single impact are applied to the sensor-switch model to demonstrate the working principle of the sensor-switch is feasible. 
    more » « less
  4. This study illustrates the concept of threshold pressure sensing using the parametric resonance of an electrostatic levitation mechanism. The electrostatic levitation allows the oscillations in the opposite direction of the substrate, thereby not limited to small gaps. The pressure sensor detects the pressure drop below a threshold value by triggering the parametric resonance with significant peak to peak dynamic amplitude changes (~ 25 𝝁𝒎). This detection relies on the fact that the instability region expands when the pressure drop forces the amplitude jump up to the higher oscillation branch. This significant change in the resonator amplitude can be related to a large capacitance variation indicating the threshold pressure. A mathematical model of the resonator is presented to show the working principle of the sensor through frequency response. Our experimental results show that the threshold pressure the sensor detects, can be adjusted by the AC voltage it receives. 
    more » « less
  5. We demonstrate a tunable air pressure switch. The switch detects when the ambient pressure drops below a threshold value and automatically triggers without the need for any computational overhead to read the pressure or trigger the switch. The switch exploits the significant fluid interaction of a MEMS beam undergoing a large oscillation from electrostatic levitation to detect changes in ambient pressure. If the oscillation amplitude near the resonant frequency is above a threshold level, dynamic pull-in is triggered and the switch is closed. The pressure at which the switch closes can be tuned by adjusting the voltage applied to the switch. The use of electrostatic levitation allows the device to be released from their pulled-in position and reused many times without mechanical failure. A theoretical model is derived and validated with experimental data. It is experimentally demonstrated that the pressure switching mechanism is feasible. 
    more » « less