Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ∼ 3.5 × 104 − 7.7 × 10−3 µg m−3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ∼ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ∼ 20 % of the oxidation products of toluene, it is the source of a significant fraction (∼ 20–40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.
more »
« less
Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions
Abstract. Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevantpolluted conditions (NOx∼10 ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers (NH4+ CIMS and I− CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O:C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction.
more »
« less
- PAR ID:
- 10127785
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 19
- Issue:
- 23
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 15117 to 15129
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Isoprene (C5H8) is the largest non-methane volatile organic compound emitted into the atmosphere. Isoprene reacts rapidly with ambient hydroxyl radicals (OH) and subsequent addition of O2 results in the formation alkyl peroxy (RO2) radicals. The fate of the initially formed RO2 radicals has been the focus of continuing theoretical and experimental research. Under pristine conditions where bimolecular reactions of RO2 are limited, the thermodynamically favored RO2 undergoes an intramolecular H-shift followed by reaction with O2 and elimination of HO2 to yield 4-hydroperoxy aldehyde (4-HPALD, C5H8O3), predicted to account for up to 13% of first-generation isoprene photochemical oxidation products. Mass spectrometric evidence has been reported for 4-HPALD, but lack of an authentic standard has precluded definitive confirmation of both the structure of 4-HPALD and its origin as a first-generation product of OH oxidation of isoprene. We report the synthesis and characterization of 4-HPALD and establish that it is a major product of isoprene oxidation. Synthetic 4-HPALD is isolated as the peroxyhemiacetal. As expected for the 4-hydroperoxy aldehyde, 1H NMR spectra show no evidence for equilibration with the carbonyl form, even in protic solvents, and gas-phase chemical analysis by CIMS also shows only a single form. OH oxidation of isoprene in an oxidation flow reactor coupled to an ion mobility source with an HR-CIMS detector unequivocally demonstrates 4-HPALD (and likely also 1-HPALD) as isoprene oxidation products. Although HPALDs have been discounted as significant contributors to SOA, oxidation of 4-HPALD in a potential aerosol mass (PAM) reactor in the presence of ozone and OH indicates 4-HPALD rapidly undergoes autooxidation reactions forming low-volatility particulate products. We have confirmed highly oxygenated compounds with compositions C5H8O6 and C5H10O6 likely from OH oxidation, and C5H10O7 and C5H10O8 compounds likely products of ozonolysis. The PAM oxidation experiment further demonstrates that the highly oxygenated, low-volatility products efficiently nucleate particles.more » « less
-
ABSTRACT: 3-Methylenebutane-1,2,4-triol and 3-methyltetrahydrofuran-2,4-diols, previously designated “C5-alkene triols”, were recently confirmed as in-particle isomerization products of isoprene-derived β-IEPOX isomers that are formed upon acid driven uptake and partition back into the gas phase. In chamber experiments, we have systematically explored their gas phase oxidation by hydroxyl radical (•OH) as a potential source of secondary organic aerosol (SOA). •OH-initiated oxidation of both compounds in the presence of ammonium bisulfate aerosol resulted in substantial aerosol volume growth. Compositions of low-volatility products in both the gas and particulate phases were established by high-resolution mass spectrometry measurements. Under conditions mimicking the Southeast USA (50% relative humidity, bulk seed aerosol pH 1.4), we estimate the SOA yield from •OH-initiated oxidation of 3-methylenebutane-1,2,4-triol to be 93.1%, equating to 1.95 ± 0.81 Tg C Yr-1, and from 3-methyltetrahydrofuran-2,4-diol oxidation to be 26.7%, equating to 1.76 ± 1.26 Tg C Yr-1. Previously unreported isoprene-derived oxidation products, 2,3-dihydroxy-2-(hydroxymethyl)propanal, 1,3,4-trihydroxybutan-2-one, and four organosulfates have been confirmed in ambient SOA, and aid in understanding isoprene oxidation pathways in HO2• dominated environments as NOx levels continue to decline in the US. This work underlines the need for inclusion of partitioning of in-particle formed semivolatile products and their atmospheric oxidation pathways in atmospheric models.more » « less
-
Abstract Number: 99 Working Group: Aerosol Chemistry Abstract Isoprene, the largest non-methane volatile organic species emitted into Earth’s atmosphere, reacts with hydroxyl radicals to initiate formation of secondary organic aerosol (SOA). Under low nitric oxide conditions, the major oxidative pathway proceeds through acid catalyzed reactive uptake of isoprene-epoxydiol isomers (IEPOX). We have recently established the structures of the semivolatile C5H10O3 uptake products (formerly designated “C5-alkene triols) of cis- and trans-β-IEPOX as 3-methylenebutane-1,2,4-triol and isomeric 3-methyltetrahydrofuran-2,4-diols. Importantly, both uptake products showed significant partitioning into the gas phase. Here, we report evidence that the uptake products along with their gas phase oxidation products constitute a hitherto unrecognized source of SOA. We show that partitioning into the gas phase results in further oxidation into low volatility products, including highly oxygenated C5-polyols, organosulfates, and dimers. In the chamber studies, gas phase products were characterized by online by iodide-Chemical Ionization Mass Spectrometry (I-CIMS) and particle phase products by offline analysis of filter extracts by HILIC/(-)ESI-HR-QTOFMS using authentic standards. The chamber studies show the potential for a substantial contribution to SOA from reactive uptake of the second generation gas phase oxidation products onto both acidified and non-acidified ammonium bisulfate seed aerosols. Identification of these previously unrecognized early-generation oxidation products will improve estimates of atmospheric carbon distribution and advance our understanding of the fate of isoprene oxidation products in the atmosphere.more » « less
-
Isoprene, the largest non-methane volatile organic species emitted into Earth’s atmosphere, reacts with hydroxyl radicals to initiate formation of secondary organic aerosol (SOA). Under low nitric oxide conditions, the major oxidative pathway proceeds through acid catalyzed reactive uptake of isoprene-epoxydiol isomers (IEPOX). We have recently established the structures of the semivolatile C5H10O3 uptake products (formerly designated “C5-alkene triols) of cis- and trans-β-IEPOX as 3-methylenebutane-1,2,4-triol and isomeric 3-methyltetrahydrofuran-2,4-diols. Importantly, both uptake products showed significant partitioning into the gas phase. Here, we report evidence that the uptake products along with their gas phase oxidation products constitute a hitherto unrecognized source of SOA. We show that partitioning into the gas phase results in further oxidation into low volatility products, including highly oxygenated C5-polyols, organosulfates, and dimers. In the chamber studies, gas phase products were characterized by online by iodide-Chemical Ionization Mass Spectrometry (I-CIMS) and particle phase products by offline analysis of filter extracts by HILIC/(-)ESI-HR-QTOFMS using authentic standards. The chamber studies show the potential for a substantial contribution to SOA from reactive uptake of the second generation gas phase oxidation products onto both acidified and non-acidified ammonium bisulfate seed aerosols. Identification of these previously unrecognized early-generation oxidation products will improve estimates of atmospheric carbon distribution and advance our understanding of the fate of isoprene oxidation products in the atmosphere.more » « less
An official website of the United States government

