skip to main content


Title: Torsional refrigeration by twisted, coiled, and supercoiled fibers
Higher-efficiency, lower-cost refrigeration is needed for both large- and small-scale cooling. Refrigerators using entropy changes during cycles of stretching or hydrostatic compression of a solid are possible alternatives to the vapor-compression fridges found in homes. We show that high cooling results from twist changes for twisted, coiled, or supercoiled fibers, including those of natural rubber, nickel titanium, and polyethylene fishing line. Using opposite chiralities of twist and coiling produces supercoiled natural rubber fibers and coiled fishing line fibers that cool when stretched. A demonstrated twist-based device for cooling flowing water provides high cooling energy and device efficiency. Mechanical calculations describe the axial and spring-index dependencies of twist-enhanced cooling and its origin in a phase transformation for polyethylene fibers.  more » « less
Award ID(s):
1726435 1636306 1661246 1727960
NSF-PAR ID:
10127970
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Science
Volume:
366
Issue:
6462
ISSN:
0036-8075
Page Range / eLocation ID:
216 to 221
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The covid‐19 pandemic has revealed the need for alternative production approaches with low startup costs like electrospinning for filter needs, the most imperative element of the personal protective equipment (PPE). Current attempts in advancing melt electrospinning deal with developing strategies for fiber diameter attenuation toward sub‐micron scale. Here, the attunement in the spinning‐zone temperature known as ''spin‐line temperature profile'' was utilized as a baseline for fiber diameter reduction. The mechanical performance of the melt‐electrospun linear low‐density polyethylene (LLDPE) fibers is reported to characterize their structural transformation with respect to various spin‐line temperature profiles. With an increase in the spin‐line temperature to above 100°C in the area of cone formation, an increased tensile and yield strength along with fiber diameter reduction by four‐folds was demonstrated. A significant increase in toughness, by almost three times, without compromising the stiffness and Young's modulus was observed. The dynamic mechanical analysis revealed that spinning in high temperatures produces changes in the alpha (α) relaxation, contributing to the significant increase in strain at break. These results are significant because polyolefin fibers are an imperative element of medical textiles and PPE. Therefore, developing a correlation for process‐structure‐properties for emerging production techniques like melt electrospinning becomes critical.

     
    more » « less
  2. Polyethylene (PE) is an intensely utilized polymer, which has consequently led to it becoming a common environmental contaminant. PE and other plastic waste are known to be highly persistent in surface waters; however, chemical and physical changes do take place over time, dependent mostly on highly variable natural conditions, such as oxygen (O2) availability. Gamma radiation was used to generate reactive oxygen species, namely hydroxyl radicals, in initially aerated aqueous solutions to simulate the natural weathering of microplastics in waters where there are fluctuations and often depletions in dissolved O2. The headspace of the irradiated PE-containing solutions was probed for the formation of degradation products using solid-phase microextraction (SPME) fibers in combination with gas chromatography mass spectrometry (GCMS). The major species detected were n-dodecane, with trace levels of tridecane, 2-dodecanone, and hexadecane, which were believed to be predominately adsorbed in the PE microplastics in excess of their aqueous solubility limits. Surface characterization by Raman spectroscopy and light and dark field microscopy indicated no change in the chemical composition of the irradiated PE microplastics under low O2 to anaerobic conditions. However, morphological changes were observed, indicating radical combination reactions. 
    more » « less
  3. Abstract

    Smart textiles that sense, interact, and adapt to environmental stimuli have provided exciting new opportunities for a variety of applications. However, current advances have largely remained at the research stage due to the high cost, complexity of manufacturing, and uncomfortableness of environment‐sensitive materials. In contrast, natural textile materials are more attractive for smart textiles due to their merits in terms of low cost and comfortability. Here, water fog and humidity‐driven torsional and tensile actuation of thermally set twisted, coiled, plied silk fibers, and weave textiles from these silk fibers are reported. When exposed to water fog, the torsional silk fiber provides a fully reversible torsional stroke of 547° mm−1. Coiled‐and‐thermoset silk yarns provide a 70% contraction when the relative humidity is changed from 20% to 80%. Such an excellent actuation behavior originates from water absorption‐induced loss of hydrogen bonds within the silk proteins and the associated structural transformation, which are corroborated by atomistic and macroscopic characterization of silk and molecular dynamics simulations. With its large abundance, cost‐effectiveness, and comfortability for wearing, the silk muscles will open up additional possibilities in industrial applications, such as smart textiles and soft robotics.

     
    more » « less
  4. Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively. 
    more » « less
  5. From insects to arachnids to bacteria, the surfaces of lakes and ponds are teaming with life. Many modes of locomotion are employed by these organisms to navigate along the air–water interface, including the use of lipid-laden excretions that can locally change the surface tension of the water and induce a Marangoni flow. In this paper, we improved the speed and maneuverability of a miniature remote-controlled robot that mimics insect locomotion using an onboard tank of isopropyl alcohol and a series of servomotors to control both the rate and location of alcohol release to both propel and steer the robot across the water. Here, we studied the effect of a series of design changes to the foam rubber footpads, which float the robot and are integral in efficiently converting the alcohol-induced surface tension gradients into propulsive forces and effective maneuvering. Two designs were studied: a two-footpad design and a single-footpad design. In the case of two footpads, the gap between the two footpads was varied to investigate its impact on straight-line speed, propulsion efficiency, and maneuverability. An optimal design was found with a small but finite gap between the two pads of 7.5 mm. In the second design, a single footpad without a central gap was studied. This footpad had a rectangular cut-out in the rear to capture the alcohol. Footpads with wider and shallower cut-outs were found to optimize efficiency. This observation was reinforced by the predictions of a simple theoretical mechanical model. Overall, the optimized single-footpad robot outperformed the two-footpad robot, producing a 30% improvement in speed and a 400% improvement in maneuverability.

     
    more » « less