skip to main content


Title: Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics
Inhabiting the interface between plant roots and soil, mycorrhizal fungi play a unique but underappreciated role in soil organic matter (SOM) dynamics. Their hyphae provide an efficient mechanism for distributing plant carbon throughout the soil, facilitating its deposition into soil pores and onto mineral surfaces, where it can be protected from microbial attack. Mycorrhizal exudates and dead tissues contribute to the microbial necromass pool now known to play a dominant role in SOM formation and stabilization. While mycorrhizal fungi lack the genetic capacity to act as saprotrophs, they use several strategies to access nutrients locked in SOM and thereby promote its decay, including direct enzymatic breakdown, oxidation via Fenton chemistry, and stimulation of heterotrophic microorganisms through carbon provision to the rhizosphere. An additional mechanism, competition with free-living saprotrophs, potentially suppresses SOM decomposition, leading to its accumulation. How these various nutrient acquisition strategies differentially influence SOM formation, stabilization, and loss is an area of critical research need.  more » « less
Award ID(s):
1832210
NSF-PAR ID:
10128087
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Review of Ecology, Evolution, and Systematics
Volume:
50
Issue:
1
ISSN:
1543-592X
Page Range / eLocation ID:
237 to 259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long‐term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition inECM‐dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition—e.g. mostAM‐dominated forests—enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients ofECM‐dominance in three temperate forests. By focusing on sites whereAM‐ andECM‐plants co‐occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that whileECMstands contain moreSOMin topsoil,AMstands contain moreSOMwhen subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues inAM‐dominated soils. Collectively, our results support emerging theory onSOMformation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization ofSOM.

     
    more » « less
  2. Summary

    Drainage‐induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role.

    We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested).

    Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza atc.120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genusCortinariusdominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together withMycena) was positively associated with peat humification and negatively with carbon‐to‐nitrogen ratio.

    Our study is consistent with a plant–soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long‐term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon‐rich soils globally.

     
    more » « less
  3. Abstract

    Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associatedOreomunnea mexicana(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of theITS2(fungi) and16SrRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.

     
    more » « less
  4. Abstract

    Predicting and mitigating changes in soil carbon (C) stocks under global change requires a coherent understanding of the factors regulating soil organic matter (SOM) formation and persistence, including knowledge of the direct sources of SOM (plants vs. microbes). In recent years, conceptual models of SOM formation have emphasized the primacy of microbial‐derived organic matter inputs, proposing that microbial physiological traits (e.g., growth efficiency) are dominant controls on SOM quantity. However, recent quantitative studies have challenged this view, suggesting that plants make larger direct contributions to SOM than is currently recognized by this paradigm. In this review, we attempt to reconcile these perspectives by highlighting that variation across estimates of plant‐ versus microbial‐derived SOM may arise in part from methodological limitations. We show that all major methods used to estimate plant versus microbial contributions to SOM have substantial shortcomings, highlighting the uncertainty in our current quantitative estimates. We demonstrate that there is significant overlap in the chemical signatures of compounds produced by microbes, plant roots, and through the extracellular decomposition of plant litter, which introduces uncertainty into the use of common biomarkers for parsing plant‐ and microbial‐derived SOM, especially in the mineral‐associated organic matter (MAOM) fraction. Although the studies that we review have contributed to a deeper understanding of microbial contributions to SOM, limitations with current methods constrain quantitative estimates. In light of recent advances, we suggest that now is a critical time to re‐evaluate long‐standing methods, clearly define their limitations, and develop a strategic plan for improving the quantification of plant‐ and microbial‐derived SOM. From our synthesis, we outline key questions and challenges for future research on the mechanisms of SOM formation and stabilization from plant and microbial pathways.

     
    more » « less
  5. Abstract

    Identifying the primary controls of particulate (POM) and mineral‐associated organic matter (MAOM) content in soils is critical for determining future stocks of soil carbon (C) and nitrogen (N) across the globe. However, drivers of these soil organic matter fractions are likely to vary among ecosystems in response to climate, soil type and the composition of local biological communities.

    We tested how soil factors, climate and plant–fungal associations influenced the distribution and concentrations of C and N in MAOM and POM in seven temperate forests in the National Ecological Observatory Network (NEON) across the eastern United States. Samples of upper mineral horizon soil within each forest were collected in plots representing a gradient of dominant tree–mycorrhizal association, allowing us to test how plant and microbial communities influenced POM and MAOM across sites differing in climate and soil conditions.

    We found that concentrations of C and N in soil organic matter were primarily driven by soil mineralogy, but the relative abundance of MAOM versus POM C was strongly linked to plot‐level mycorrhizal dominance. Furthermore, the effect of dominant tree mycorrhizal type on the distribution of N among POM and MAOM fractions was sensitive to local climate: in cooler sites, an increasing proportion of ectomycorrhizal‐associated trees was associated with lower proportions of N in MAOM, but in warmer sites, we found the reverse. As an indicator of soil carbon age, we measured radiocarbon in the MAOM fraction but found that within and across sites, Δ14C was unrelated to mycorrhizal dominance, climate, or soil factors, suggesting that additional site‐specific factors may be primary determinants of long‐term SOM persistence.

    Synthesis. Our results indicate that while soil mineralogy primarily controls SOM C and N concentrations, the distribution of SOM among density fractions depends on the composition of vegetation and microbial communities, with these effects varying across sites with distinct climates. We also suggest that within biomes, the age of mineral‐associated soil carbon is not clearly linked to the factors that control concentrations of MAOM C and N.

     
    more » « less