The multilinear polytope of a hypergraph is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of the multilinear polytope, referred to as the running intersection relaxation, and identify conditions under which this relaxation is tight. Namely, we show that for kite-free beta-acyclic hypergraphs, a class that lies between gamma-acyclic and beta-acyclic hypergraphs, the running intersection relaxation coincides with the multilinear polytope and it admits a polynomial size extended formulation.
On the impact of running intersection inequalities for globally solving polynomial optimization problems
We consider global optimization of nonconvex problems whose factorable reformulations contain a collection of multilinear equations. Important special cases include multilinear and polynomial optimization problems. The multilinear polytope is the convex hull of the set of binary points z satisfying the system of multilinear equations given above. Recently Del Pia and Khajavirad introduced running intersection inequalities, a family of facet-defining inequalities for the multilinear polytope. In this paper we address the separation problem for this class of inequalities. We first prove that separating flower inequalities, a subclass of running intersection inequalities, is NP-hard. Subsequently, for multilinear polytopes of fixed degree, we devise an efficient polynomial-time algorithm for separating running intersection inequalities and embed the proposed cutting-plane generation scheme at every node of the branch-and-reduce global solver BARON. To evaluate the effectiveness of the proposed method we consider two test sets: randomly generated multilinear and polynomial optimization problems of degree three and four, and computer vision instances from an image restoration problem Results show that running intersection cuts significantly improve the performance of BARON and lead to an average CPU time reduction of 50% for the random test set and of 63% for the image restoration test set.
- Award ID(s):
- 1634768
- Publication Date:
- NSF-PAR ID:
- 10128200
- Journal Name:
- Mathematical Programming Computation
- ISSN:
- 1867-2949
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rankmore »
-
Given a random n × n symmetric matrix 𝑾 drawn from the Gaussian orthogonal ensemble (GOE), we consider the problem of certifying an upper bound on the maximum value of the quadratic form 𝒙^⊤ 𝑾 𝒙 over all vectors 𝒙 in a constraint set 𝒮 ⊂ ℝⁿ. For a certain class of normalized constraint sets we show that, conditional on a certain complexity-theoretic conjecture, no polynomial-time algorithm can certify a better upper bound than the largest eigenvalue of 𝑾. A notable special case included in our results is the hypercube 𝒮 = {±1/√n}ⁿ, which corresponds to the problem of certifyingmore »
-
We study the chance-constrained bin packing problem, with an application to hospital operating room planning. The bin packing problem allocates items of random sizes that follow a discrete distribution to a set of bins with limited capacity, while minimizing the total cost. The bin capacity constraints are satisfied with a given probability. We investigate a big-M and a 0-1 bilinear formulation of this problem. We analyze the bilinear structure of the formulation and use the lifting techniques to identify cover, clique, and projection inequalities to strengthen the formulation. We show that in certain cases these inequalities are facet-defining for amore »
-
We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer bi- nary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approachmore »