skip to main content


Search for: All records

Award ID contains: 1634768

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances. Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance. 
    more » « less
  2. Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvátal rank. We determine the Chvátal rank of all known cutting planes and show that almost all of them have Chvátal rank 1. We observe that these inequalities have an associated hypergraph that is β-acyclic. Our second goal is to derive deeper cutting planes; to do so, we consider hypergraphs that admit β-cycles. We introduce a novel class of valid inequalities arising from odd β-cycles, that generally have Chvátal rank 2. These inequalities allow us to obtain the first characterization of the multilinear polytope for hypergraphs that contain β-cycles. Namely, we show that the multilinear polytope for cycle hypergraphs is given by the standard linearization inequalities, flower inequalities, and odd β-cycle inequalities. We also prove that odd β-cycle inequalities can be separated in linear time when the hypergraph is a cycle hypergraph. This shows that instances represented by cycle hypergraphs can be solved in polynomial time. Last, to test the strength of odd β-cycle inequalities, we perform numerical experiments that imply that they close a significant percentage of the integrality gap. 
    more » « less
  3. The multilinear polytope of a hypergraph is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of the multilinear polytope, referred to as the running intersection relaxation, and identify conditions under which this relaxation is tight. Namely, we show that for kite-free beta-acyclic hypergraphs, a class that lies between gamma-acyclic and beta-acyclic hypergraphs, the running intersection relaxation coincides with the multilinear polytope and it admits a polynomial size extended formulation. 
    more » « less
  4. We consider global optimization of nonconvex problems whose factorable reformulations contain a collection of multilinear equations. Important special cases include multilinear and polynomial optimization problems. The multilinear polytope is the convex hull of the set of binary points z satisfying the system of multilinear equations given above. Recently Del Pia and Khajavirad introduced running intersection inequalities, a family of facet-defining inequalities for the multilinear polytope. In this paper we address the separation problem for this class of inequalities. We first prove that separating flower inequalities, a subclass of running intersection inequalities, is NP-hard. Subsequently, for multilinear polytopes of fixed degree, we devise an efficient polynomial-time algorithm for separating running intersection inequalities and embed the proposed cutting-plane generation scheme at every node of the branch-and-reduce global solver BARON. To evaluate the effectiveness of the proposed method we consider two test sets: randomly generated multilinear and polynomial optimization problems of degree three and four, and computer vision instances from an image restoration problem Results show that running intersection cuts significantly improve the performance of BARON and lead to an average CPU time reduction of 50% for the random test set and of 63% for the image restoration test set. 
    more » « less