skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Open Source Vulnerability Notification
The use of third-party libraries to manage software complexity can expose open source software projects to vulnerabilities. However, project owners do not currently have a standard way to enable private disclosure of potential security vulnerabilities. This neglect may be caused in part by having no template to follow for disclosing such vulnerabilities. We analyzed 600 GitHub projects to determine how many projects contained a vulnerable dependency and whether the projects had a process in place to privately communicate security issues. We found that 385 out of 600 open source Java projects contained at least one vulnerable dependency, and only 13 of those 385 projects had a security vulnerability reporting process. That is, 96.6% of the projects with a vulnerability did not have a security notification process in place to allow for private disclosure. In determining whether the projects even had contact information publicly available, we found that 19.8% had no contact information publicly available, let alone a security vulnerability reporting process. We suggest two methods to allow for community members to privately disclose potential security vulnerabilities.  more » « less
Award ID(s):
1646392 1740897
NSF-PAR ID:
10128312
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Bordeleau F., Sillitti A., Meirelles P., Lenarduzzi V. (eds) Open Source Systems. OSS 2019. IFIP Advances in Information and Communication Technology
Volume:
556
Page Range / eLocation ID:
12-23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vulnerabilities have a detrimental effect on end-users and enterprises, both direct and indirect; including loss of private data, intellectual property, the competitive edge, performance, etc. Despite the growing software industry and a push towards a digital economy, enterprises are increasingly considering security as an added cost, which makes it necessary for those enterprises to see a tangible incentive in adopting security. Furthermore, despite data breach laws that are in place, prior studies have suggested that only 4% of reported data breach incidents have resulted in litigation in federal courts, showing the limited legal ramifications of security breaches and vulnerabilities. In this paper, we study the hidden cost of software vulnerabilities reported in the National Vulnerability Database (NVD) through stock price analysis. Towards this goal, we perform a high-fidelity data augmentation to ensure data reliability and to estimate vulnerability disclosure dates as a baseline for estimating the implication of software vulnerabilities. We further build a model for stock price prediction using the NARX Neural Network model to estimate the effect of vulnerability disclosure on the stock price. Compared to prior work, which relies on linear regression models, our approach is shown to provide better accuracy. Our analysis also shows that the effect of vulnerabilities on vendors varies, and greatly depends on the specific software industry. Whereas some industries are shown statistically to be affected negatively by the release of software vulnerabilities, even when those vulnerabilities are not broadly covered by the media, some others were not affected at all. 
    more » « less
  2. Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful “0-day” attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those “0-day” attacks to at least “n-day” attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches in open source software. To distinguish security patches from other patches, we first build a security patch database that contains more than 4700 security patches mapping to the records in CVE list. Next, we identify a set of features to help distinguish security patches from non-security ones using machine learning approaches. Finally, we use code clone identification mechanisms to discover similar patches or vulnerabilities in similar types of OSS. The experimental results show our approach can achieve good detection performance. A case study on OpenSSL, LibreSSL, and BoringSSL discovers 12 secret security patches. 
    more » « less
  3. Software depends on upstream projects that regularly fix vulnerabilities, but the documentation of those vulnerabilities is often unreliable or unavailable. Automating the collection of existing vulnerability fixes is essential for downstream projects to reliably update their dependencies due to the sheer number of dependencies in modern software. Prior efforts rely solely on incomplete databases or imprecise or inaccurate statistical analysis of upstream repositories. In this paper, we introduce Differential Alert Analysis (DAA) to discover vulnerability fixes in software projects. In contrast to statistical analysis, DAA leverages static analysis security testing (SAST) tools, which reason over code context and semantics. We provide a language-independent implementation of DAA and show that for Python and Java based projects, DAA has high precision for a ground-truth dataset of vulnerability fixes — even with noisy and low-precision SAST tools. We then use DAA in two large-scale empirical studies covering several prominent ecosystems, finding hundreds of resolved alerts, including many never publicly disclosed. DAA thus provides a powerful, accurate primitive for software projects, code analysis tools, vulnerability databases, and researchers to characterize and enhance the security of software supply chains. 
    more » « less
  4. Detecting software vulnerabilities has been a challenge for decades. Many techniques have been developed to detect vulnerabilities by reporting whether a vulnerability exists in the code of software. But few of them have the capability to categorize the types of detected vulnerabilities, which is crucial for human developers or other tools to analyze and address vulnerabilities. In this paper, we present our work on identifying the types of vulnerabilities using deep learning. Our data consists of code slices parsed in a manner that captures the syntax and semantics of a vulnerability, sourced from prior work. We train deep neural networks on these features to perform multiclass classification of software vulnerabilities in the dataset. Our experiments show that our models can effectively identify the vulnerability classes of the vulnerable functions in our dataset. 
    more » « less
  5. Context: Applying vulnerability detection techniques is one of many tasks using the limited resources of a software project. Objective: The goal of this research is to assist managers and other decision- makers in making informed choices about the use of software vulnerability detection techniques through an empirical study of the efficiency and effectiveness of four techniques on a Java-based web application. Method: We apply four different categories of vulnerability detection techniques – systematic manual penetration testing (SMPT), exploratory manual penetration testing (EMPT), dynamic application security testing (DAST), and static application security testing (SAST) – to an open-source medical records system. Results: We found the most vulnerabilities using SAST. However, EMPT found more severe vulnerabilities. With each technique, we found unique vulnerabilities not found using the other techniques. The efficiency of manual techniques (EMPT, SMPT) was comparable to or better than the efficiency of automated techniques (DAST, SAST) in terms of Vulnerabilities per Hour (VpH). Conclusions: The vulnerability detection technique practitioners should select may vary based on the goals and available resources of the project. If the goal of an organization is to find “all” vulnerabilities in a project, they need to use as many techniques as their resources allow. 
    more » « less