skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Decidable Logic for Tree Data-Structures with Measurements
We present DRYADdec, a decidable logic that allows reasoning about tree data-structures with measurements. This logic supports user-defined recursive measure functions based on Max or Sum, and recursive predicates based on these measure functions, such as AVL trees or red-black trees. We prove that the logic’s satisfiability is decidable. The crux of the decidability proof is a small model property which allows us to reduce the satisfiability of DRYADdec to quantifier-free linear arithmetic theory which can be solved efficiently using SMT solvers. We also show that DRYADdec can encode a variety of verification and synthesis problems, including natural proof verification conditions for functional correctness of recursive tree-manipulating programs, legality conditions for fusing tree traversals, synthesis conditions for conditional linear-integer arithmetic functions. We developed the decision procedure and successfully solved 220+ DRYADdec formulae raised from these application scenarios, including verifying functional correctness of programs manipulating AVL trees, red-black trees and treaps, checking the fusibility of height-based mutually recursive tree traversals, and counterexample-guided synthesis from linear integer arithmetic specifications. To our knowledge, DRYADdec is the first decidable logic that can solve such a wide variety of problems requiring flexible combination of measure-related, data-related and shape-related properties for trees.  more » « less
Award ID(s):
1837023
PAR ID:
10128362
Author(s) / Creator(s):
;
Date Published:
Journal Name:
20th International Conference on Verification, Model Checking, and Abstract Interpretation
Page Range / eLocation ID:
318 - 341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Traversals are commonly seen in tree data structures, and performance-enhancing transformations between tree traversals are critical for many applications. Existing approaches to reasoning about tree traversals and their transformations are ad hoc, with various limitations on the classes of traversals they can handle, the granularity of dependence analysis, and the types of possible transformations. We propose Retreet, a framework in which one can describe general recursive tree traversals, precisely represent iterations, schedules and dependences, and automatically check data-race-freeness and transformation correctness. The crux of the framework is a stack-based representation for iterations and an encoding to Monadic Second-Order (MSO) logic over trees. Experiments show that Retreet can automatically verify optimizations for complex traversals on real-world data structures, such as CSS and cycletrees, which are not possible before. Our framework is also integrated with other MSO-based analysis techniques to verify even more challenging program transformations. 
    more » « less
  2. Automated deductive program synthesis promises to generate executable programs from concise specifications, along with proofs of correctness that can be independently verified using third-party tools. However, an attempt to exercise this promise using existing proof-certification frameworks reveals significant discrepancies in how proof derivations are structured for two different purposes: program synthesis and program verification. These discrepancies make it difficult to use certified verifiers to validate synthesis results, forcing one to write an ad-hoc translation procedure from synthesis proofs to correctness proofs for each verification backend. In this work, we address this challenge in the context of the synthesis and verification of heap-manipulating programs. We present a technique for principled translation of deductive synthesis derivations (a.k.a. source proofs) into deductive target proofs about the synthesised programs in the logics of interactive program verifiers. We showcase our technique by implementing three different certifiers for programs generated via SuSLik, a Separation Logic-based tool for automated synthesis of programs with pointers, in foundational verification frameworks embedded in Coq: Hoare Type Theory (HTT), Iris, and Verified Software Toolchain (VST), producing concise and efficient machine-checkable proofs for characteristic synthesis benchmarks. 
    more » « less
  3. Abstract This paper studies the problem of synthesizing (lexicographic) polynomial ranking functions for loops that can be described in polynomial arithmetic over integers and reals. While the analogous ranking function synthesis problem forlineararithmetic is decidable, even checking whether agivenfunction ranks an integer loop is undecidable in the nonlinear setting. We side-step the decidability barrier by working within the theory of linear integer/real rings (LIRR) rather than the standard model of arithmetic. We develop a termination analysis that is guaranteed to succeed if a loop (expressed as a formula) admits a (lexicographic) polynomial ranking function. In contrast to template-based ranking function synthesis inrealarithmetic, our completeness result holds for lexicographic ranking functions of unbounded dimension and degree, and effectively subsumes linear lexicographic ranking function synthesis for linearintegerloops. 
    more » « less
  4. Verification of program safety is often reducible to proving the unsatisfiability (i.e., validity) of a formula in Satisfiability Modulo Theories (SMT): Boolean logic combined with theories that formalize arbitrary first-order fragments. Zeroknowledge (ZK) proofs allow SMT formulas to be validated without revealing the underlying formulas or their proofs to other parties, which is a crucial building block for proving the safety of proprietary programs. Recently, Luo et al. studied the simpler problem of proving the unsatisfiability of pure Boolean formulas but does not support proofs generated by SMT solvers. This work presents ZKSMT, a novel framework for proving the validity of SMT formulas in ZK. We design a virtual machine (VM) tailored to efficiently represent the verification process of SMT validity proofs in ZK. Our VM can support the vast majority of popular theories when proving program safety while being complete and sound. To demonstrate this, we instantiate the commonly used theories of equality and linear integer arithmetic in our VM with theory-specific optimizations for proving them in ZK. ZKSMT achieves high practicality even when running on realistic SMT formulas generated by Boogie, a common tool for software verification. It achieves a three-order-of-magnitude improvement compared to a baseline that executes the proof verification code in a general ZK system. 
    more » « less
  5. Abstract Checking satisfiability of formulae in the theory of linear arithmetic has far reaching applications, including program verification and synthesis. Many satisfiability solvers excel at proving and disproving satisfiability of quantifier-free linear arithmetic formulas and have recently begun to support quantified formulas. Beyond simply checking satisfiability of formulas, fine-grained strategies for satisfiability games enables solving additional program verification and synthesis tasks. Quantified satisfiability games are played between two players—SAT and UNSAT—who take turns instantiating quantifiers and choosing branches of boolean connectives to evaluate the given formula. A winning strategy for SAT (resp. UNSAT) determines the choices of SAT (resp. UNSAT) as a function of UNSAT ’s (resp. SAT ’s) choices such that the given formula evaluates to true (resp. false) no matter what choices UNSAT (resp. SAT) may make. As we are interested in both checking satisfiabilityandsynthesizing winning strategies, we must avoid conversion to normal-forms that alter the game semantics of the formula (e.g. prenex normal form). We present fine-grained strategy improvement and strategy synthesis, the first technique capable of synthesizing winning fine-grained strategies for linear arithmetic satisfiability games, which may be used in higher-level applications. We experimentally evaluate our technique and find it performs favorably compared with state-of-the-art solvers. 
    more » « less