We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delaysensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelationprinciplemore »
Persuading RiskConscious Agents: A Geometric Approach
Motivated by practical concerns in applying information design to markets and service systems, we consider a persuasion problem between a sender and a receiver where the receiver may not be an expected utility maximizer. In particular, the receiver’s utility may be nonlinear in her belief; we deem such receivers as riskconscious. Such utility models arise, for example, when the receiver exhibits sensitivity to the variability and the risk in the payoff on choosing an action (e.g., waiting time for a service). In the presence of such nonlinearity, the standard approach of using revelationprinciple style arguments fails to characterize the set of signals needed in the optimal signaling scheme. Our main contribution is to provide a theoretical framework, using results from convex analysis, to overcome this technical challenge. In particular, in general persuasion settings with riskconscious agents, we prove that the sender’s problem can be reduced to a convex optimization program. Furthermore, using this characterization, we obtain a bound on the number of signals needed in the optimal signaling scheme.
We apply our methods to study a specific setting, namely binary persuasion, where the receiver has two possible actions (0 and 1), and the sender always prefers the receiver taking action 1. more »
 Publication Date:
 NSFPAR ID:
 10128622
 Journal Name:
 Lecture notes in computer science
 ISSN:
 16113349
 Sponsoring Org:
 National Science Foundation
More Like this


Feldman, M. (Ed.)We study a Bayesian persuasion setting in which the receiver is trying to match the (binary) state of the world. The sender’s utility is partially aligned with the receiver’s, in that conditioned on the receiver’s action, the sender derives higher utility when the state of the world matches the action. Our focus is on whether in such a setting, being constrained helps a receiver. Intuitively, if the receiver can only take the sender’s preferred action with smaller probability, the sender might have to reveal more information, so that the receiver can take the action more specifically when the sender prefers it. We show that with a binary state of the world, this intuition indeed carries through: under very mild nondegeneracy conditions, a more constrained receiver will always obtain (weakly) higher utility than a less constrained one. Unfortunately, without additional assumptions, the result does not hold when there are more than two states in the world, which we show with an explicit example.

We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N colocated agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfaremaximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient twostep approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient samplingmore »

Feldman, M. (Ed.)We consider a Bayesian persuasion problem where the sender tries to persuade the receiver to take a particular action via a sequence of signals. This we model by considering multiphase trials with different experiments conducted based on the outcomes of prior experiments. In contrast to most of the literature, we consider the problem with constraints on signals imposed on the sender. This we achieve by fixing some of the experiments in an exogenous manner; these are called determined experiments. This modeling helps us understand realworld situations where this occurs: e.g., multiphase drug trials where the FDA determines some of the experiments, startup acquisition by big firms where latestage assessments are determined by the potential acquirer, multiround job interviews where the candidates signal initially by presenting their qualifications but the rest of the screening procedures are determined by the interviewer. The nondetermined experiments (signals) in the multiphase trial are to be chosen by the sender in order to persuade the receiver best. With a binary state of the world, we start by deriving the optimal signaling policy in the only nontrivial configuration of a twophase trial with binaryoutcome experiments. We then generalize to multiphase trials with binaryoutcome experiments where the determinedmore »

In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as itmore »