skip to main content


Search for: All records

Award ID contains: 2002156

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Nonmonetary mechanisms for repeated allocation and decision making are gaining widespread use in many real-world settings. Our aim in this work is to study the performance and incentive properties of simple mechanisms based on artificial currencies in such settings. To this end, we make the following contributions: For a general allocation setting, we provide two black-box approaches to convert any one-shot monetary mechanism to a dynamic nonmonetary mechanism using an artificial currency that simultaneously guarantees vanishing gains from nontruthful reporting over time and vanishing losses in performance. The two mechanisms trade off between their applicability and their computational and informational requirements. Furthermore, for settings with two agents, we show that a particular artificial currency mechanism also results in a vanishing price of anarchy. 
    more » « less
  2. null (Ed.)
    We consider an ad network’s problem of allocating the auction for each individual impression to an optimal subset of advertisers with the goal of revenue maximization. This is a variant of bipartite matching except that advertisers may strategize by choosing their bidding profiles and their total budget. Because the ad network’s allocation rule affects the bidders’ strategies, equilibrium analysis is challenging. We show that this analysis is tractable when advertisers face a linear budget cost r_j. In particular, we show that the strategy in which advertisers bid their valuations shaded by a factor of 1 + r_j is an approximate equilibrium with the error decreasing with market size. This equilibrium can be interpreted as one in which a bidder facing an opportunity cost rj is guaranteed a return on investment of at least rj per dollar spent. Furthermore, in this equilibrium, the optimal allocation for the ad network, as determined from a linear program (LP), is greedy with high probability. This is in contrast with the exogenous budgets case, in which the LP optimization is challenging at practical scales. These results are evidence that, although in general such bipartite matching problems may be challenging to solve because of their high dimensionality, the optimal solution is remarkably simple at equilibrium. 
    more » « less
  3. null (Ed.)
  4. We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient sampling procedure over sets of agents consistent with these optimal marginal probabilities; the optimal private mechanism then asks the sampled set of agents to move and the rest to stay. 2) For public signaling, we first show the welfare-maximizing equilibrium given any common belief has a threshold structure. Using this, we show that the optimal public mechanism with respect to the sender-preferred equilibrium can be computed in polynomial time. 3) We support our analytical results with numerical computations that show the optimal private and public signaling mechanisms achieve substantially higher social welfare when compared with no-information and full-information benchmarks. 
    more » « less
  5. Motivated by practical concerns in applying information design to markets and service systems, we consider a persuasion problem between a sender and a receiver where the receiver may not be an expected utility maximizer. In particular, the receiver’s utility may be non-linear in her belief; we deem such receivers as risk-conscious. Such utility models arise, for example, when the receiver exhibits sensitivity to the variability and the risk in the payoff on choosing an action (e.g., waiting time for a service). In the presence of such non-linearity, the standard approach of using revelation-principle style arguments fails to characterize the set of signals needed in the optimal signaling scheme. Our main contribution is to provide a theoretical framework, using results from convex analysis, to overcome this technical challenge. In particular, in general persuasion settings with risk-conscious agents, we prove that the sender’s problem can be reduced to a convex optimization program. Furthermore, using this characterization, we obtain a bound on the number of signals needed in the optimal signaling scheme. We apply our methods to study a specific setting, namely binary per-suasion, where the receiver has two possible actions (0 and 1), and the sender always prefers the receiver taking action 1. Under a mild convexity assumption on the receiver’s utility and using a geometric approach,we show that the convex program can be further reduced to a linear program. Furthermore, this linear program yields a canonical construction of the set of signals needed in an optimal signaling mechanism. In particular, this canonical set of signals only involves signals that fully reveal the state and signals that induce uncertainty between two states.We illustrate our results in the setting of signaling wait time information in an unobservable queue with customers whose utilities depend on the variance of their waiting times. 
    more » « less
  6. In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as it could with an observable queue and length-dependent variable prices. Next, we study demand and inventory signaling in online markets: customers make strategic purchasing decisions, knowing the price will decrease if an item does not sell out. The firm aims to convince customers to buy now at a higher price. We show that the optimal signaling mechanism is public, and sends all customers the same information. Finally, we consider customers whose ex ante utility is not simply their expected ex post utility, but instead a function of its distribution. We bound the number of signals needed for the firm to generate their optimal utility and provide a convex program reduction of the firm's problem. 
    more » « less