Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Nonmonetary mechanisms for repeated allocation and decision making are gaining widespread use in many realworld settings. Our aim in this work is to study the performance and incentive properties of simple mechanisms based on artificial currencies in such settings. To this end, we make the following contributions: For a general allocation setting, we provide two blackbox approaches to convert any oneshot monetary mechanism to a dynamic nonmonetary mechanism using an artificial currency that simultaneously guarantees vanishing gains from nontruthful reporting over time and vanishing losses in performance. The two mechanisms trade off between their applicability and their computational and informational requirements. Furthermore, for settings with two agents, we show that a particular artificial currency mechanism also results in a vanishing price of anarchy.

We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N colocated agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfaremaximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient twostep approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient samplingmore »

Motivated by practical concerns in applying information design to markets and service systems, we consider a persuasion problem between a sender and a receiver where the receiver may not be an expected utility maximizer. In particular, the receiver’s utility may be nonlinear in her belief; we deem such receivers as riskconscious. Such utility models arise, for example, when the receiver exhibits sensitivity to the variability and the risk in the payoff on choosing an action (e.g., waiting time for a service). In the presence of such nonlinearity, the standard approach of using revelationprinciple style arguments fails to characterize the set of signals needed in the optimal signaling scheme. Our main contribution is to provide a theoretical framework, using results from convex analysis, to overcome this technical challenge. In particular, in general persuasion settings with riskconscious agents, we prove that the sender’s problem can be reduced to a convex optimization program. Furthermore, using this characterization, we obtain a bound on the number of signals needed in the optimal signaling scheme. We apply our methods to study a specific setting, namely binary persuasion, where the receiver has two possible actions (0 and 1), and the sender always prefers the receiver taking actionmore »

In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as itmore »

We study the problem of optimal information sharing in the context of a service system. In particular, we consider an unobservable single server queue offering a service at a fixed price to a Poisson arrival of delaysensitive customers. The service provider can observe the queue, and may share information about the state of the queue with each arriving customer. The customers are Bayesian and strategic, and incorporate any information provided by the service provider into their prior beliefs about the queue length before making the decision whether to join the queue or leave without obtaining service. We pose the following question: which signaling mechanism and what price should the service provider select to maximize her revenue? We formulate this problem as an instance of Bayesian persuasion in dynamic settings. The underlying dynamics make the problem more difficult because, in contrast to static settings, the signaling mechanism adopted by the service provider affects the customers' prior beliefs about the queue (given by the steady state distribution of the queue length in equilibrium). The core contribution of this work is in characterizing the structure of the optimal signaling mechanism. We summarize our main results as follows. (1) Structural characterization: Using a revelationprinciplemore »

Nonmonetary mechanisms for repeated resource allocation are gaining widespread use in many realworld settings. Our aim in this work is to study the allocative efficiency and incentive properties of simple repeated mechanisms based on artificial currencies. Within this framework, we make three main contributions: We provide a general blackbox technique to convert any static monetary mechanism to a dynamic mechanism with artificial currency, that simultaneously guarantees vanishing loss in efficiency, and vanishing gains from nontruthful bidding over time. On a computational front, we show how such a mechanism can be implemented using only sampleaccess to the agents' type distributions, and requires roughly twice the amount of computation as needed to run the monetary mechanism alone. For settings with two agents, we show that a particular artificial currency mechanism also results in a vanishing price of anarchy. This provides additional justification for the use of artificial currency mechanisms in practice. Moreover, we show how to leverage this result to demonstrate the existence of a Bayesian incentivecompatible mechanism with vanishing efficiency loss in this setting. Our work takes a significant step towards bridging the gap between monetary and nonmonetary mechanisms, and also points to several open problems.