Momentum methods such as Polyak's heavy ball (HB) method, Nesterov's accelerated gradient (AG) as well as accelerated projected gradient (APG) method have been commonly used in machine learning practice, but their performance is quite sensitive to noise in the gradients. We study these methods under a first-order stochastic oracle model where noisy estimates of the gradients are available. For strongly convex problems, we show that the distribution of the iterates of AG converges with the accelerated linear rate to a ball of radius " centered at a unique invariant distribution in the 1-Wasserstein metric where is the condition number as long as the noise variance is smaller than an explicit upper bound we can provide. Our analysis also certifies linear convergence rates as a function of the stepsize, momentum parameter and the noise variance; recovering the accelerated rates in the noiseless case and quantifying the level of noise that can be tolerated to achieve a given performance. To the best of our knowledge, these are the first linear convergence results for stochastic momentum methods under the stochastic oracle model. We also develop finer results for the special case of quadratic objectives, extend our results to the APG method and weakly convex functions showing accelerated rates when the noise magnitude is sufficiently small.
more »
« less
Variance Amplification of Accelerated First-Order Algorithms for Strongly Convex Quadratic Optimization Problems
We study performance of accelerated first-order optimization algorithms in the presence of additive white stochastic disturbances. For strongly convex quadratic problems, we explicitly evaluate the steady-state variance of the optimization variable in terms of the eigenvalues of the Hessian of the objective function. We demonstrate that, as the condition number increases, variance amplification of both Nesterov's accelerated method and the heavy-ball method by Polyak is significantly larger than that of the standard gradient descent. In the context of distributed computation over networks, we examine the role of network topology and spatial dimension on the performance of these first-order algorithms. For d-dimensional tori, we establish explicit asymptotic dependence for the variance amplification on the network size and the corresponding condition number. Our results demonstrate detrimental influence of acceleration on amplification of stochastic disturbances and suggest that metrics other than convergence rate have to be considered when evaluating performance of optimization algorithms.
more »
« less
- Award ID(s):
- 1809833
- PAR ID:
- 10128661
- Date Published:
- Journal Name:
- 2018 IEEE Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 5753 to 5758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the performance of noisy gradient descent and Nesterov's accelerated methods for strongly convex objective functions with Lipschitz continuous gradients. The steady-state second-order moment of the error in the iterates is analyzed when the gradient is perturbed by an additive white noise with zero mean and identity covariance. For any given condition number κ, we derive explicit upper bounds on noise amplification that only depend on κ and the problem size. We use quadratic objective functions to derive lower bounds and to demonstrate that the upper bounds are tight up to a constant factor. The established upper bound for Nesterov's accelerated method is larger than the upper bound for gradient descent by a factor of √κ. This gap identifies a fundamental tradeoff that comes with acceleration in the presence of stochastic uncertainties in the gradient evaluation.more » « less
-
We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analyzing properties of an underlying generic stochastic process; in particular, we derive a bound on the expected stopping time of this process. We utilize this framework to analyze the expected global convergence rates of a stochastic variant of a traditional trust-region method. Although traditional trust-region methods rely on exact computations of the gradient, Hessian, and values of the objective function, this method assumes that these values are available only up to some dynamically adjusted accuracy. Moreover, this accuracy is assumed to hold only with some sufficiently large—but fixed—probability without any additional restrictions on the variance of the errors. This setting applies, for example, to standard stochastic optimization and machine learning formulations. Improving upon prior analysis, we show that the stochastic process defined by the trust-region method satisfies the assumptions of our proposed general framework. The stopping time in this setting is defined by an iterate satisfying a first-order accuracy condition. We demonstrate the first global complexity bound for a stochastic trust-region method under the assumption of sufficiently accurate stochastic gradients. Finally, we apply the same framework to derive second-order complexity bounds under additional assumptions.more » « less
-
We propose a novel framework for analyzing convergence rates of stochastic optimization algorithms with adaptive step sizes. This framework is based on analyzing properties of an underlying generic stochastic process; in particular, we derive a bound on the expected stopping time of this process. We utilize this framework to analyze the expected global convergence rates of a stochastic variant of a traditional trust-region method. Although traditional trust-region methods rely on exact computations of the gradient, Hessian, and values of the objective function, this method assumes that these values are available only up to some dynamically adjusted accuracy. Moreover, this accuracy is assumed to hold only with some sufficiently large—but fixed—probability without any additional restrictions on the variance of the errors. This setting applies, for example, to standard stochastic optimization and machine learning formulations. Improving upon prior analysis, we show that the stochastic process defined by the trust-region method satisfies the assumptions of our proposed general framework. The stopping time in this setting is defined by an iterate satisfying a first-order accuracy condition. We demonstrate the first global complexity bound for a stochastic trust-region method under the assumption of sufficiently accurate stochastic gradients. Finally, we apply the same framework to derive second-order complexity bounds under additional assumptions. Previousmore » « less
-
We provide new gradient-based methods for efficiently solving a broad class of ill-conditioned optimization problems. We consider the problem of minimizing a function f : R d --> R which is implicitly decomposable as the sum of m unknown non-interacting smooth, strongly convex functions and provide a method which solves this problem with a number of gradient evaluations that scales (up to logarithmic factors) as the product of the square-root of the condition numbers of the components. This complexity bound (which we prove is nearly optimal) can improve almost exponentially on that of accelerated gradient methods, which grow as the square root of the condition number of f. Additionally, we provide efficient methods for solving stochastic, quadratic variants of this multiscale optimization problem. Rather than learn the decomposition of f (which would be prohibitively expensive), our methods apply a clean recursive “Big-Step-Little-Step” interleaving of standard methods. The resulting algorithms use O˜(dm) space, are numerically stable, and open the door to a more fine-grained understanding of the complexity of convex optimization beyond condition number.more » « less