skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of the State of Stress in the Fracturing and Micro-Seismic Activity of Hydraulically-Fractured Granite
Hydraulic fracturing can be recognized as an emerging method used in the mining of heat in Enhanced Geothermal Systems as well as in the extraction of oil and gas entrapped within shale formations. While there are several experimental studies focusing on the initiation and propagation of hydraulically-induced fractures under uniaxial and biaxial loading conditions, a very limited number of experimental studies investigate the effect of triaxial loading conditions on fracture initiation and propagation. This study describes an experimental setup, which was designed to allow one to independently apply and control three orthogonal stresses in prismatic granite specimens while simultaneously applying a hydraulic pressure inside pre-fabricated flaws. Moreover, the test setup allows one to observe and subsequently interpret the fracturing processes through visual and acoustic emission (AE) monitoring. The observations obtained in the current study using a triaxial state of stress were interpreted and compared with existing experimental studies that used other states of stress. It was observed that whitening of some grains and high-amplitude AE events occurred where visible cracks eventually developed for the triaxial state of stress investigated. Comparison with previous studies, in which only vertical loads (uniaxial) were applied, shows that the aperture of the hydraulically-induced fractures for the triaxial condition is significantly smaller than for the uniaxial loadings and that the coalescence patterns are, in general, stress-state-dependent. In terms of AE data, the total number of AE events in the specimens subject to triaxial stresses were significantly higher than in the tests using uniaxial stresses, even though most of the events (65%) had a relatively low-amplitude (<50dB) in contrast to the uniaxial tests, in which low-amplitude events were typically less than 50%.  more » « less
Award ID(s):
1738081
PAR ID:
10128788
Author(s) / Creator(s):
;
Date Published:
Journal Name:
US Rock Mechanics/Geomechanics Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydraulic fracturing arises as a method to enhance oil and gas production, and also as a way to recover geothermal energy. It is, therefore, essential to understand how injecting a fluid inside a rock reservoir will affect its surroundings. Hydraulic fracturing processes can be strongly affected by the interaction between two mechanisms: the elastic effects caused by the hydraulic pressure applied inside fractures and the poro-mechanical effects caused by the fluid infiltration inside the porous media (i.e. fluid diffusivity); this, in turn, is affected by the injection rate used. The interaction between poro-elastic mechanisms, particularly the effect of the fluid diffusivity, in the hydraulic fracturing processes is not well-understood and is investigated in this paper. This study aims to experimentally and theoretically comprehend the effects of the injection rate on crack propagation and on pore pressures, when flaws pre-fabricated in prismatic gypsum specimens are hydraulically pressurized. In order to accomplish this, laboratory experiments were performed using two injection rates (2 and 20 ml/min), applied by an apparatus consisting of a pressure enclosure with an impermeable membrane in both faces of the specimen, which allowed one to observe the growth of a fluid front from the pre-fabricated flaws to the unsaturated porous media (i.e. rock), before fracturing took place. It was observed that the fracturing pressures and patterns are injection-rate-dependent. This was interpreted to be caused by the different pore pressures that developed in the rock matrix, which resulted from the significantly distinct fluid fronts observed for the two injection rates tested. 
    more » « less
  2. McCartney, J.S.; Tomac, I. (Ed.)
    This paper focuses on the results from thermal triaxial tests on normally consolidated Georgia Kaolinite. The hypothesis evaluated in this study is whether the initial mean effective stress has an impact on the thermal volume change encountered during drained heating. To that effect, specimens at three different initial mean effective stresses were considered in this study. The clay specimens were first isotropically consolidated to a normally consolidated state, then subjected to a drained heating cooling cycle followed by further mechanical loading to higher effective stresses. The results indicate contractive volumetric strain during drained heating where the volumetric strain was found to increase with increasing initial mean effective stress. A rebound in volume was observed during subsequent cooling where the net change in volume transitioned from zero volume change of the specimen to net contraction of the specimen after a heating cooling cycle as the initial mean effective stress increased. The results indicate the need for considering the effect of initial mean effective stress when assessing in-situ heating as a method of soil improvement. 
    more » « less
  3. Abstract Many geo‐engineering applications, for example, enhanced geothermal systems, rely on hydraulic fracturing to enhance the permeability of natural formations and allow for sufficient fluid circulation. Over the past few decades, the phase‐field method has grown in popularity as a valid approach to modeling hydraulic fracturing because of the ease of handling complex fracture propagation geometries. However, existing phase‐field methods cannot appropriately capture nucleation of hydraulic fractures because their formulations are solely energy‐based and do not explicitly take into account the strength of the material. Thus, in this work, we propose a novel phase‐field formulation for hydraulic fracturing with the main goal of modeling fracture nucleation in porous media, for example, rocks. Built on the variational formulation of previous phase‐field methods, the proposed model incorporates the material strength envelope for hydraulic fracture nucleation through two important steps: (i) an external driving force term, included in the damage evolution equation, that accounts for the material strength; (ii) a properly designed damage function that defines the fluid pressure contribution on the crack driving force. The comparison of numerical results for two‐dimensional test cases with existing analytical solutions demonstrates that the proposed phase‐field model can accurately model both nucleation and propagation of hydraulic fractures. Additionally, we present the simulation of hydraulic fracturing in a three‐dimensional domain with various stress conditions to demonstrate the applicability of the method to realistic scenarios. 
    more » « less
  4. Abstract Distributed acoustic sensing (DAS) was originally intended to measure oscillatory strain at frequencies of 1 Hz or more on a fiber optic cable. Recently, measurements at much lower frequencies have opened the possibility of using DAS as a dynamic strain sensor in boreholes. A fiber optic cable mechanically coupled to a geologic formation will strain in response to hydraulic stresses in pores and fractures. A DAS interrogator can measure dynamic strain in the borehole, which can be related to fluid pressure through the mechanical compliance properties of the formation. Because DAS makes distributed measurements, it is capable of both locating hydraulically active features and quantifying the fluid pressure in the formation. We present field experiments in which a fiber optic cable was mechanically coupled to two crystalline rock boreholes. The formation was stressed hydraulically at another well using alternating injection and pumping. The DAS instrument measured oscillating strain at the location of a fracture zone known to be hydraulically active. Rock displacements of less than 1 nm were measured. Laboratory experiments confirm that displacement is measured correctly. These results suggest that fiber optic cable embedded in geologic formations may be used to map hydraulic connections in three‐dimensional fracture networks. A great advantage of this approach is that strain, an indirect measure of hydraulic stress, can be measured without beforehand knowledge of flowing fractures that intersect boreholes. The technology has obvious applications in water resources, geothermal energy, CO2sequestration, and remediation of groundwater in fractured bedrock. 
    more » « less
  5. ABSTRACT:The chemo-mechanical loading of rocks causes the dissolution and precipitation of multiple phases in the rock. This dissolution and precipitation of load-bearing mineral phases lead to the stress redistribution in neighboring phases, which in turn results in deformational changes of the sample composite. The aim of this study is to investigate the link between microstructural evolution and creep behavior of shale rocks subjected to chemo-mechanical loading through modeling time-dependent deformation induced by the dissolution-precipitation process. The model couples the microstructural evolution of the shale rocks with the stress/strain fields inside the material as a function of time. The modeling effort is supplemented with an experimental study where shale rocks were exposed to CO2-rich brine under high temperature and pressure conditions. 3D snapshots of the sample microstructure were generated using segmented micro-CT images of the shale sample. The time-evolving microstructures were then integrated with the Finite element-based mechanical model to simulate the creep induced by dissolution and precipitation processes independent of the intrinsic viscoelasticity/viscoplasticity of the mineral phases. After computation of the time-dependent viscoelastic properties of the shale composite, the combined microstructure model and finite element model were utilized to predict the time-dependent stress and strain fields in different zones of reacted shale. 1. INTRODUCTIONDetermination of viscous behavior of shale rocks is key in wide range of applications such as stability of reservoirs, stability of geo-structures subjected to environmental forcing, underground storage of hazardous materials and hydraulic fracturing. Short-term creep strains in hydraulic fracturing can change stress fields and in turn can impact the hydraulic fracturing procedures(H. Sone & Zoback, 2010; Hiroki Sone & Zoback, 2013). While long-term creep strains can hamper the reservoir performance due to the reduction in permeability of the reservoir by closing of fractures and fissures(Du, Hu, Meegoda, & Zhang, 2018; Rybacki, Meier, & Dresen, 2016; Sharma, Prakash, & Abedi, 2019; Hiroki Sone & Zoback, 2014). Owing to these significance of creep strain, it is important to understand the viscoelastic/viscoplastic behavior of shales. 
    more » « less