skip to main content

Title: Effects of fluid diffusivity on hydraulic fracturing processes using visual analysis
Hydraulic fracturing arises as a method to enhance oil and gas production, and also as a way to recover geothermal energy. It is, therefore, essential to understand how injecting a fluid inside a rock reservoir will affect its surroundings. Hydraulic fracturing processes can be strongly affected by the interaction between two mechanisms: the elastic effects caused by the hydraulic pressure applied inside fractures and the poro-mechanical effects caused by the fluid infiltration inside the porous media (i.e. fluid diffusivity); this, in turn, is affected by the injection rate used. The interaction between poro-elastic mechanisms, particularly the effect of the fluid diffusivity, in the hydraulic fracturing processes is not well-understood and is investigated in this paper. This study aims to experimentally and theoretically comprehend the effects of the injection rate on crack propagation and on pore pressures, when flaws pre-fabricated in prismatic gypsum specimens are hydraulically pressurized. In order to accomplish this, laboratory experiments were performed using two injection rates (2 and 20 ml/min), applied by an apparatus consisting of a pressure enclosure with an impermeable membrane in both faces of the specimen, which allowed one to observe the growth of a fluid front from the pre-fabricated flaws to the unsaturated porous media (i.e. rock), before fracturing took place. It was observed that the fracturing pressures and patterns are injection-rate-dependent. This was interpreted to be caused by the different pore pressures that developed in the rock matrix, which resulted from the significantly distinct fluid fronts observed for the two injection rates tested.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
US Rock Mechanics/Geomechanics Symposium
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbonate sediments play a prominent role on the global geological stage as they store more than $$60\%$$ 60 % of world’s oil and $$40\%$$ 40 % of world’s gas reserves. Prediction of the deformation and failure of porous carbonates is, therefore, essential to minimise reservoir compaction, fault reactivation, or wellbore instability. This relies on our understanding of the mechanisms underlying the observed inelastic response to fluid injection or deviatoric stress perturbations. Understanding the impact of deformation/failure on the hydraulic properties of the rock is also essential as injection/production rates will be affected. In this work, we present new experimental results from triaxial deformation experiments carried out to elucidate the behaviour of a porous limestone reservoir analogue (Savonnières limestone). Drained triaxial and isotropic compression tests were conducted at five different confining pressures in dry and water-saturated conditions. Stress–strain data and X-ray tomography images of the rock indicate two distinct types of deformation and failure regimes: at low confinement (10 MPa) brittle failure in the form of dilatant shear banding was dominant; whereas at higher confinement compaction bands orthogonal to the maximum principal stress formed. In addition to the pore pressure effect, the presence of water in the pore space significantly weakened the rock, thereby shrinking the yield envelope compared to the dry conditions, and shifted the brittle–ductile transition to lower effective confining pressures (from 35 MPa to 29 MPa). Finally, permeability measurements during deformation show a reduction of an order of magnitude in the ductile regime due to the formation of the compaction bands. These results highlight the importance of considering the role of the saturating fluid in the brittle–ductile response of porous rocks and elucidate some of the microstructural processes taking place during this transition. 
    more » « less
  2. Abstract

    The spatiotemporal patterns of injection‐induced seismicity (IIS) are commonly interpreted with the concept of a triggering front, which propagates in a diffusion‐like manner with an associated diffusivity parameter. Here, we refer to this diffusivity as the “seismic diffusivity.” Several previous studies implicitly assume that seismic diffusivity is equivalent to the effective hydraulic diffusivity of the subsurface, which describes the behavior of the mean pressure field in heterogeneous porous media. Seismicity‐based approaches for hydraulic characterization or simulations of IIS using domains of homogeneous equivalent porous media are implicitly based on this assumed equivalence. However, seismicity is expected to propagate with the threshold triggering pressure, and thus not be controlled by the evolution of the mean pressure field. We present numerical simulations of fluid injection to compare the seismic and effective hydraulic diffusivities in heterogeneous formations (including fractured rock). The numerical model combines uncoupled, linear pressure diffusion with the Mohr‐Coulomb failure criterion to simulate IIS. We demonstrate that connected pathways of relatively high hydraulic diffusivity in heterogeneous media (particularly in fractured rock domains) allow the threshold triggering pressure to propagate more rapidly than predicted by the effective hydraulic diffusivity. As a result, the seismic diffusivity is greater than the effective hydraulic diffusivity in heterogeneous porous media, possibly by an order of magnitude or more. Additionally, we present a case study of IIS near Soultz‐sous‐Forêts where seismic diffusivity is found to be at least one order of magnitude larger than the effective hydraulic diffusivity.

    more » « less
  3. Abstract

    Fluid injection into rock formations can either produce complex branched hydraulic fractures, create simple planar fractures, or be dominated by porous diffusion. Currently, the optimum injection parameters to create branched fractures are unknown. We conducted repeatable hydraulic fracturing experiments using analog‐rock samples with controlled heterogeneity to quantify the fluid parameters that promote fracture branching. A large range of injection rates and fluid viscosities were used to investigate their effects on induced fracture patterns. Paired with a simple analytical model, our results identify the threshold at which fracture transitions from an isolated planar crack to branched cracks when closed natural fractures exist. These results demonstrate that this transition can be controlled by injection rate and fluid viscosity. In relation to the field practices, the present model predicts slickwater and lower viscosity fluid injections promote fracture branching, with the Marcellus shale used as an example.

    more » « less
  4. Hydraulic fracturing can be recognized as an emerging method used in the mining of heat in Enhanced Geothermal Systems as well as in the extraction of oil and gas entrapped within shale formations. While there are several experimental studies focusing on the initiation and propagation of hydraulically-induced fractures under uniaxial and biaxial loading conditions, a very limited number of experimental studies investigate the effect of triaxial loading conditions on fracture initiation and propagation. This study describes an experimental setup, which was designed to allow one to independently apply and control three orthogonal stresses in prismatic granite specimens while simultaneously applying a hydraulic pressure inside pre-fabricated flaws. Moreover, the test setup allows one to observe and subsequently interpret the fracturing processes through visual and acoustic emission (AE) monitoring. The observations obtained in the current study using a triaxial state of stress were interpreted and compared with existing experimental studies that used other states of stress. It was observed that whitening of some grains and high-amplitude AE events occurred where visible cracks eventually developed for the triaxial state of stress investigated. Comparison with previous studies, in which only vertical loads (uniaxial) were applied, shows that the aperture of the hydraulically-induced fractures for the triaxial condition is significantly smaller than for the uniaxial loadings and that the coalescence patterns are, in general, stress-state-dependent. In terms of AE data, the total number of AE events in the specimens subject to triaxial stresses were significantly higher than in the tests using uniaxial stresses, even though most of the events (65%) had a relatively low-amplitude (<50dB) in contrast to the uniaxial tests, in which low-amplitude events were typically less than 50%. 
    more » « less
  5. Abstract

    The modeling of coupled fluid transport and deformation in a porous medium is essential to predict the various geomechanical process such as CO2 sequestration, hydraulic fracturing, and so on. Current applications of interest, for instance, that include fracturing or damage of the solid phase, require a nonlinear description of the large deformations that can occur. This paper presents a variational energy‐based continuum mechanics framework to model large‐deformation poroelasticity. The approach begins from the total free energy density that is additively composed of the free energy of the components. A variational procedure then provides the balance of momentum, fluid transport balance, and pressure relations. A numerical approach based on finite elements is applied to analyze the behavior of saturated and unsaturated porous media using a nonlinear constitutive model for the solid skeleton. Examples studied include the Terzaghi and Mandel problems; a gas–liquid phase‐changing fluid; multiple immiscible gases; and unsaturated systems where we model injection of fluid into soil. The proposed variational approach can potentially have advantages for numerical methods as well as for combining with data‐driven models in a Bayesian framework.

    more » « less