We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean.
more »
« less
Patterns of total mercury and methylmercury bioaccumulation in Antarctic krill (Euphausia superba) along the West Antarctic Peninsula
We examined mercury (Hg) accumulation in juvenile and adult subpopulations of Antarctic krill (Euphausia superba) collected west of the Antarctic Peninsula. Samples were collected along a northern cross-shelf transect beginning near Anvers Island and farther south near the sea ice edge in the austral summers of 2011, 2013, 2014, and 2015. Regardless of geographical position, mean concentrations of total Hg and methylmercury (MeHg), the form of Hg that biomagnifies in marine food webs, were significantly higher in juvenile than adult krill in all years. In 2013, juvenile Antarctic krill collected along the coast near Anvers Island had significantly higher MeHg concentrations than krill collected farther offshore, and in 2013 and 2014, coastal juvenile krill exhibited some of the highest MeHg concentrations of all subpopulations sampled. Across all sampling years, collection in northern (sea ice-free) or southern (sea ice edge) transects did not affect MeHg concentrations of juvenile or adult krill, suggesting similar levels and routes of MeHg exposure across the latitudes sampled. Developmental stage, feeding near the coast, and annual variations in sea ice-driven primary and export production were identified as potentially important factors leading to greater MeHg accumulation in juvenile than adult krill. Krill-dependent predators feeding primarily on juveniles may thus accumulate more MeHg than consumers foraging on older krill. These results report MeHg concentrations in Antarctic krill and will be useful for predicting Hg biomagnification in higher-level consumers in this productive Antarctic ecosystem.
more »
« less
- Award ID(s):
- 1634154
- PAR ID:
- 10128947
- Date Published:
- Journal Name:
- Science of the total environment
- Volume:
- 688
- ISSN:
- 1879-1026
- Page Range / eLocation ID:
- 174-183
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins9 diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 μg·g_1) than adults (0.49 ± 0.23 μg·g_1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future.more » « less
-
Bluefin tuna (BFT), highly prized among consumers, accumulate high levels of mercury (Hg) as neurotoxic methylmercury (MeHg). However, how Hg bioaccumulation varies among globally distributed BFT populations is not understood. Here, we show mercury accumulation rates (MARs) in BFT are highest in the Mediterranean Sea and decrease as North Pacific Ocean > Indian Ocean > North Atlantic Ocean. Moreover, MARs increase in proportion to the concentrations of MeHg in regional seawater and zooplankton, linking MeHg accumulation in BFT to MeHg bioavailability at the base of each subbasin's food web. Observed global patterns correspond to levels of Hg in each ocean subbasin; the Mediterranean, North Pacific, and Indian Oceans are subject to geogenic enrichment and anthropogenic contamination, while the North Atlantic Ocean is less so. MAR in BFT as a global pollution index reflects natural and human sources and global thermohaline circulation.more » « less
-
Abstract The Antarctic krillEuphausia superbais often considered an herbivore but is notable for its trophic flexibility, which includes feeding on protistan and metazoan zooplankton. Characterizing krill trophic position (TP) is important for understanding carbon and energy flow from phytoplankton to vertebrate predators and to the deep ocean, especially as plankton composition is sensitive to changing climate. We used repeated field sampling and experiments to study feeding by juvenile krill during three austral summers in waters near Palmer Station, Antarctica. Our approach was to combine seasonal carbon budgets, gut fluorescence measurements, imaging flow cytometry, and compound‐specific isotope analysis of amino acids. Field measurements coupled to experimentally derived grazing functional response curves suggest that phytoplankton grazing alone was insufficient to support the growth and basal metabolism of juvenile krill. Phytoplankton consumption by juvenile krill was limited due to inefficient feeding on nanoplankton (2–20 μm), which constituted the majority of autotrophic prey. Mean krill TP and the metazoan dietary fraction increased in years with higher mesozooplankton biomass, which was not coupled to phytoplankton biomass. Comparing TP estimates using δ15N of different amino acids indicated a substantial and consistent food‐web contribution from heterotrophic protists. Phytoplankton, metazoans, and heterotrophic protists all were important contributors to a diverse krill diet that changed substantially among years. Juvenile krill fed mostly on heterotrophic prey during summer near Palmer Station, and this food web complexity should be considered more broadly throughout the changing Southern Ocean.more » « less
-
In recent years, substantial efforts have been made to understand the implications of climate change on Antarctic krill, Euphausia superba , because of their pivotal role in the Southern Ocean food web and in biogeochemical cycling. Winter is one of the least studied seasons in Antarctica and we have limited understanding about the strategies Antarctic krill use to survive the winter. In particular, data on the winter physiology and condition of juvenile Antarctic krill are severely lacking. From May to September (the austral autumn-winter) of 2019, we maintained juvenile Antarctic krill in large (1,330 L) aquarium tanks at Palmer Station, Antarctica and, at monthly time intervals, measured their physiology and condition. Each tank served as a “food environment scenario”, representing possible food environments the krill may encounter during winter along the Western Antarctic Peninsula. We found that, unlike adults, juvenile krill maintain relatively high respiration rates through the winter and respond positively to increased food concentrations by increasing their ingestion rates. Unlike larval krill, juveniles use lipid stores accumulated during the summer and autumn to sustain themselves through periods of starvation in the winter. We used our empirically derived measurements of physiology and condition to estimate the energy budget and growth potential of juvenile krill during the winter. We found that, given their comparatively high respiration rates, small juvenile krill (20 mg dry weight) would need to encounter food at concentrations of ~ 0.15 mg C L -1 daily to avoid loss of body carbon. Without sufficient lipid reserves, this value increases to ~ 0.54 mg C L -1 , daily. The health of juvenile krill in the wintertime is dependent on their ability to accumulate lipid stores in the summer and autumn and to find sufficient food during the winter. Changes in food availability to Antarctic krill throughout the year may become problematic to juvenile krill in the future. Understanding the variability in the winter energy budget of juvenile Antarctic krill will allow us to improve population models that make assumptions on seasonal growth patterns.more » « less
An official website of the United States government

