skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seen and unseen: bursty star formation and its implications for observations of high-redshift galaxies with JWST
ABSTRACT Both observations and simulations have shown strong evidence for highly time-variable star formation in low-mass and/or high-redshift galaxies, which has important observational implications because high-redshift galaxy samples are rest-ultraviolet (rest-UV) selected and therefore particularly sensitive to the recent star formation. Using a suite of cosmological ‘zoom-in’ simulations at z > 5 from the Feedback in Realistic Environments project, we examine the implications of bursty star formation histories for observations of high-redshift galaxies with JWST. We characterize how the galaxy observability depends on the star formation history. We also investigate selection effects due to bursty star formation on the physical properties measured, such as the gas fraction, specific star formation rate, and metallicity. We find the observability to be highly time-dependent for galaxies near the survey’s limiting flux due to the star formation rate variability: as the star formation rate fluctuates, the same galaxy oscillates in and out of the observable sample. The observable fraction $$f_\mathrm{obs} = 50~{{\ \rm per\ cent}}$$ at z ∼ 7 and M⋆ ∼ 108.5–$$10^{9}\, {\rm M}_{\odot }$$ for a JWST/NIRCam survey reaching a limiting magnitude of $$m^\mathrm{lim}_\mathrm{AB} \sim 29{\!-\!}30$$, representative of surveys such as JADES and CEERS. JWST-detectable galaxies near the survey limit tend to have properties characteristic of galaxies in the bursty phase: on average, they show approximately 2.5 times higher cold, dense gas fractions and 20 times higher specific star formation rates at a given stellar mass than galaxies below the rest-UV detection threshold. Our study represents a first step in quantifying selection effects and the associated biases due to bursty star formation in studying high-redshift galaxy properties.  more » « less
Award ID(s):
1652522 2108230 2307327
PAR ID:
10467968
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2665-2672
Size(s):
p. 2665-2672
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT JWST observations have revealed a population of galaxies bright enough that potentially challenge standard galaxy formation models in the Λ cold dark matter (ΛCDM) cosmology. Using a minimal empirical framework, we investigate the influence of variability on the rest-frame ultra-violet (UV) luminosity function of galaxies at z ≥ 9. Our study differentiates between the median UV radiation yield and the variability of UV luminosities of galaxies at a fixed dark matter halo mass. We primarily focus on the latter effect, which depends on halo assembly and galaxy formation processes and can significantly increase the abundance of UV-bright galaxies due to the upscatter of galaxies in lower-mass haloes. We find that a relatively low level of variability, σUV ≈ 0.75 mag, matches the observational constraints at z ≈ 9. However, increasingly larger σUV is necessary when moving to higher redshifts, reaching $$\sigma _{\rm UV} \approx 2.0\, (2.5)\, {\rm mag}$$ at z ≈ 12 (16). This implied variability is consistent with expectations of physical processes in high-redshift galaxies such as bursty star formation and dust clearance during strong feedback cycles. Photometric constraints from JWST at z ≳ 9 therefore can be reconciled with a standard ΛCDM-based galaxy formation model calibrated at lower redshifts without the need for adjustments to the median UV radiation yield. 
    more » « less
  2. null (Ed.)
    ABSTRACT The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M* > 107 M⊙ and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M* < 107 M⊙ or M1500 > −17). For reionization models, extrapolating luminosity functions with a constant faint-end slope from M1500 = −17 down to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼ 12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online. 
    more » « less
  3. ABSTRACT We post-process galaxies in the IllustrisTNG simulations with skirt radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at z ≥ 4. The rest-frame K- and z-band galaxy luminosity functions from TNG are overall consistent with observations, despite $${\sim}0.5\, \mathrm{dex}$$ underprediction at z = 4 for MK ≲ −25 and Mz ≲ −24. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. Based on theoretical estimations, we show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $$500\, {\rm arcmin}^{2}$$ at z = 6 (z = 8). As opposed to the consistency in the UV, optical, and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshift are qualitatively consistent with observations, the peak dust temperature of z ≥ 6 galaxies are overestimated by about $$20\, {\rm K}$$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts. 
    more » « less
  4. ABSTRACT The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Λ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4–6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright end (MUV > −19.5) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect ∼80 (∼200) galaxies with a signal-to-noise ratio of 10 (5) within the NIRCam field of view, $$2.2\times 2.2 \, {\rm arcmin}^{2}$$, for a total exposure time of $$10^5\, {\rm s}$$ in the redshift range z = 8 ± 0.5. These numbers drop to ∼10 (∼40) for an exposure time of $$10^4\, {\rm s}$$. 
    more » « less
  5. Abstract We present self-consistent radiation hydrodynamic simulations of hydrogen reionization performed with arepo-rt complemented by a state-of-the-art galaxy formation model. We examine how photoheating feedback, due to reionization, shapes the galaxies properties. Our fiducial model completes reionization by z ≈ 6 and matches observations of the Ly α forest, the cosmic microwave background electron scattering optical depth, the high-redshift ultraviolet (UV) luminosity function, and stellar mass function. Contrary to previous works, photoheating suppresses star formation rates by more than $$50{{\ \rm per\ cent}}$$ only in haloes less massive than ∼108.4 M⊙ (∼108.8 M⊙) at z = 6 (z = 5), suggesting inefficient photoheating feedback from photons within galaxies. The use of a uniform UV background that heats up the gas at z ≈ 10.7 generates an earlier onset of suppression of star formation compared to our fiducial model. This discrepancy can be mitigated by adopting a UV background model with a more realistic reionization history. In the absence of stellar feedback, photoheating alone is only able to quench haloes less massive than ∼109 M⊙ at z ≳ 5, implying that photoheating feedback is sub-dominant in regulating star formation. In addition, stellar feedback, implemented as a non-local galactic wind scheme in the simulations, weakens the strength of photoheating feedback by reducing the amount of stellar sources. Most importantly, photoheating does not leave observable imprints in the UV luminosity function, stellar mass function, or the cosmic star formation rate density. The feasibility of using these observables to detect imprints of reionization therefore requires further investigation. 
    more » « less