skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Parental Effects and Climate Change: Will Avian Incubation Behavior Shield Embryos from Increasing Environmental Temperatures?
Abstract A major driver of wildlife responses to climate change will include non-genomic effects, like those mediated through parental behavior and physiology (i.e., parental effects). Parental effects can influence lifetime reproductive success and survival, and thus population-level processes. However, the extent to which parental effects will contribute to population persistence or declines in response to climate change is not well understood. These effects may be substantial for species that exhibit extensive parental care behaviors, like birds. Environmental temperature is important in shaping avian incubation behavior, and these factors interact to determine the thermal conditions embryos are exposed to during development, and subsequently avian phenotypes and secondary sex ratios. In this article, we argue that incubation behavior may be an important mediator of avian responses to climate change, we compare incubation strategies of two species adapted to different thermal environments nesting in extreme heat, and we present a simple model that estimates changes in egg temperature based on these incubation patterns and predicted increases in maximum daily air temperature. We demonstrate that the predicted increase in air temperature by 2100 in the central USA will increase temperatures that eggs experience during afternoon off-bouts and the proportion of nests exposed to lethal temperatures. To better understand how species and local adaptations and behavioral-plasticity of incubation behavior will contribute to population responses to climate change comparisons are needed across more avian populations, species, and thermal landscapes.  more » « less
Award ID(s):
1833590
PAR ID:
10129092
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
1068 to 1080
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects’ performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf-nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes. 
    more » « less
  2. null (Ed.)
    The environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9–10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination. 
    more » « less
  3. Abstract Climate warming is predicted to increase mean temperatures and thermal extremes on a global scale. Because their body temperature depends on the environmental temperature, ectotherms bear the full brunt of climate warming. Predicting the impact of climate warming on ectotherm diversity and distributions requires a framework that can translate temperature effects on ectotherm life‐history traits into population‐ and community‐level outcomes. Here we present a mechanistic theoretical framework that can predict the fundamental thermal niche and climate envelope of ectotherm species based on how temperature affects the underlying life‐history traits. The advantage of this framework is twofold. First, it can translate temperature effects on the phenotypic traits of individual organisms to population‐level patterns observed in nature. Second, it can predict thermal niches and climate envelopes based solely on trait response data and, hence, completely independently of any population‐level information. We find that the temperature at which the intrinsic growth rate is maximized exceeds the temperature at which abundance is maximized under density‐dependent growth. As a result, the temperature at which a species will increase the fastest when rare is lower than the temperature at which it will recover from a perturbation the fastest when abundant. We test model predictions using data from a naturalized–invasive interaction to identify the temperatures at which the invasive can most easily invade the naturalized's habitat and the naturalized is most likely to resist the invasive. The framework is sufficiently mechanistic to yield reliable predictions for individual species and sufficiently broad to apply across a range of ectothermic taxa. This ability to predict the thermal niche before a species encounters a new thermal environment is essential to mitigating some of the major effects of climate change on ectotherm populations around the globe. 
    more » « less
  4. Abstract How forests respond to accelerated climate change will affect the terrestrial carbon cycle. To better understand these responses, more examples are needed to assess how tree growth rates react to abrupt changes in growing‐season temperatures. Here we use a natural experiment in which a glacier's fluctuations exposed a temperate rainforest to changes in summer temperatures of similar magnitude to those predicted to occur by 2050. We hypothesized that the onset of glacier‐accentuated temperature trends would act to increase the variance in stand‐level tree growth rates, a proxy for forest net primary productivity. Instead, dendrochronological records reveal that the growth rates of five, co‐occurring conifer species became less synchronous, and this diversification of species responses acted to reduce the variance and to increase the stability of community‐wide growth rates. These results warrant further inquiry into how climate‐induced changes in tree‐growth diversity may help stabilize future ecosystem services like forest carbon storage. 
    more » « less
  5. Cooke, Steve (Ed.)
    Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations. 
    more » « less