skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurement of the Complex Human Atrial-Ventricular Motions using Contact-Based Doppler Radar
Contact-based cardiac motion detection using Quadrature Doppler radar faces a challenge of the I/Q-formed non-arc constellation. In this work, a hypothesis is brought forward that such complicated constellation originates from not one, but two moving targets. The dual-motion model may very well explain that contact-based Doppler radar detects both atrium and ventricle motions during cardiac cycles. In this work, dual-motion simulation and phantom measurements are presented, verifying that the atrial-ventricular motions are the reason that I/Q baseband signals transcribe a complex non-arc constellation. It offers the first evidence that contact-based Doppler radar measures actual heart motion.  more » « less
Award ID(s):
1660253
PAR ID:
10129096
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate continuous measurement of respiratory displacement using continuous wave Doppler radar requires rigorous management of dc offset which changes when a subject changes distance from the radar measurement system. Effective measurement, therefore, requires robust dynamic calibration which can recognize and compensate for changes in the nominal position of a subject. In this paper, a respiratory displacement measurement algorithm is proposed which can differentiate between sedentary and non-sedentary conditions and continuously adapt to provide long-term monitoring of a subject’s sedentary respiration. Arctangent demodulation is an effective means of quantifying continuous displacement using a quadrature Doppler radar, yet it depends on accurate identification of dc offset and dc information contributions in the radar I-Q arc with the subject in a particular position. The dynamic calibration method proposed here is demonstrated to differentiate between sedentary and non-sedentary conditions for six subjects to produce accurate sedentary respiration measurements even when the subject arbitrarily changes position, once the appropriate thresholds are established for the measurement environment. 
    more » « less
  2. Indoor passive radar has gained traction as a method for measuring small-amplitude motions without requiring a cooperative signal to be transmitted by the sensor. Ubiquitous signals such as Wi-Fi and Bluetooth may be used as illuminators of opportunity in order to measure the motion of various targets. Both the direct, unmodulated signal as well as the Doppler-shifted signal are received at the radar and are used for down-conversion to baseband. Since there is no cooperative local oscillator used in passive radar, it is not currently possible to effectively extract both the I and Q channel data making null-point detection a returning problem. In this work, the null-point detection problem is analyzed theoretically to develop a simulation model for passive radar sensing. Using this model, an in-depth analysis is undertaken in order to determine the effectiveness of methods such as channel selection, frequency tuning, or multi-band/multi-static sensing in removing or mitigating the null-point detection problem. The results demonstrate that despite the presence of the null-point issue, it is possible to reduce its impact on motion detection and optimize the detection sensitivity. 
    more » « less
  3. Abstract Due to differences between air and debris motions, debris centrifuging creates bias in wind estimates based on Doppler velocities and radar wind retrievals in tornadoes. Anomalous radial divergence, azimuthal wind underestimation, and vertical velocity bias associated with debris centrifuging can lead to erroneous interpretations of tornado intensity and structure from radar data. A novel spectral velocity correction technique is developed to reduce bias by identifying rain and debris motion in radar signals using dual-polarization spectral density estimation and fuzzy logic classification. This technique successfully improves Doppler velocity estimates in simulated S-band polarimetric time series data, although debris concentration modulates both the magnitude and correctability of velocity bias. Large bias magnitudes associated with high debris concentrations are the most difficult to fully correct using this technique, especially at low elevation angles and near the center of the tornado. However, the magnitudes of corrections applied are proportional to the original bias magnitudes, suggesting that the technique performs consistently across low and high debris concentrations. Spectral correction results in an overall 84% reduction in bias in simulations. The spectral correction technique is also applied to dual-polarization S-band radar observations of the 20 May 2013 Moore, Oklahoma tornado. Overall increases in Doppler velocity magnitudes, especially at lower elevation angles, imply that spectral correction can successfully reduce centrifuging bias in observed Doppler velocities. 
    more » « less
  4. In this paper a phase shifter based multi-arc circle fitting method was proposed to improve accuracy of Doppler radar remote motion sensing. Experiments were conducted to validate the approach by measuring displacement of 3 mm using 2.4 GHz quadrature continuous wave (CW) Doppler radar. It was demonstrated that mean error drops from 4.529% to 1.073% when multiple shifting arcs are utilized to enhance detection accuracy. A greater improvement in accuracy is observed when more arcs are applied. 
    more » « less
  5. Abstract High-resolution airborne cloud Doppler radars such as the W-band Wyoming Cloud Radar (WCR) have, since the 1990s, investigated cloud microphysical, kinematic, and precipitation structures down to 30-m resolution. These measurements revolutionized our understanding of fine-scale cloud structure and the scales at which cloud processes occur. Airborne cloud Doppler radars may also resolve cloud turbulent eddy structure directly at 10-m scales. To date, cloud turbulence has been examined as variances and dissipation rates at coarser resolution than individual pulse volumes. The present work advances the potential of near-vertical pulse-pair Doppler spectrum width as a metric for turbulent air motion. Doppler spectrum width has long been used to investigate turbulent motions from ground-based remote sensors. However, complexities of airborne Doppler radar and spectral broadening resulting from platform and hydrometeor motions have limited airborne radar spectrum width measurements to qualitative interpretation only. Here we present the first quantitative validation of spectrum width from an airborne cloud radar. Echoes with signal-to-noise ratio greater than 10 dB yield spectrum width values that strongly correlate with retrieved mean Doppler variance for a range of nonconvective cloud conditions. Further, Doppler spectrum width within turbulent regions of cloud also shows good agreement with in situ eddy dissipation rate (EDR) and gust probe variance. However, the use of pulse-pair estimated spectrum width as a metric for turbulent air motion intensity is only suitable for turbulent air motions more energetic than the magnitude of spectral broadening, estimated to be <0.4 m s−1for the WCR in these cases. Significance StatementDoppler spectrum width is a widely available airborne radar measurement previously considered too uncertain to attribute to atmospheric turbulence. We validate, for the first time, the response of spectrum width to turbulence at and away from research aircraft flight level and demonstrate that under certain conditions, spectrum width can be used to diagnose atmospheric turbulence down to scales of tens of meters. These high-resolution turbulent air motion intensity measurements may better connect to cloud hydrometeor process and growth response seen in coincident radar reflectivity structures proximate to turbulent eddies. 
    more » « less