Malware written in dynamic languages such as PHP routinely employ anti-analysis techniques such as obfuscation schemes and evasive tricks to avoid detection. On top of that, attackers use automated malware creation tools to create numerous variants with little to no manual effort.
This paper presents a system called Cubismo to solve this pressing problem. It processes potentially malicious files and decloaks their obfuscations, exposing the hidden malicious code into multiple files. The resulting files can be scanned by existing malware detection tools, leading to a much higher chance of detection. Cubismo achieves improved detection by exploring all executable statements of a suspect program counterfactually to see through complicated polymorphism, metamorphism and, obfuscation techniques and expose any malware.
Our evaluation on a real-world data set collected from a commercial web hosting company shows that Cubismo is highly effective in dissecting sophisticated metamorphic malware with multiple layers of obfuscation. In particular, it enables VirusTotal to detect 53 out of 56 zero-day malware samples in the wild, which were previously undetectable.
more »
« less
MalMax: Multi-Aspect Execution for Automated Dynamic Web Server Malware Analysis
This paper presents MalMax, a novel system to detect server-side malware that routinely employ sophisticated polymorphic evasive runtime code generation techniques. When MalMax encounters an execution point that presents multiple possible execution paths (e.g., via predicates and/or dynamic code), it explores these paths through counterfactual execution of code sandboxed within an isolated execution environment. Furthermore, a unique feature of MalMax is its cooperative isolated execution model in which unresolved artifacts (e.g., variables, functions, and classes) within one execution context can be concretized using values from other execution contexts. Such cooperation dramatically amplifies the reach of counterfactual execution. As an example, for Wordpress, cooperation results in 63% additional code coverage. The combination of counterfactual execution and cooperative isolated execution enables MalMax to accurately and effectively identify malicious behavior. Using a large (1 terabyte) real-world dataset of PHP web applications collected from a commercial web hosting company, we performed an extensive evaluation of MalMax. We evaluated the effectiveness of MalMax by comparing its ability to detect malware against VirusTotal, a malware detector that aggregates many diverse scanners. Our evaluation results show that MalMax is highly effective in exposing malicious behavior in complicated polymorphic malware. MalMax was also able to identify 1,485 malware samples that are not detected by any existing state-of-the-art tool, even after 7 months in the wild.
more »
« less
- NSF-PAR ID:
- 10129207
- Date Published:
- Journal Name:
- Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security
- Page Range / eLocation ID:
- 1849 to 1866
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The key challenge of software reverse engi- neering is that the source code of the program under in- vestigation is typically not available. Identifying differ- ences between two executable binaries (binary diffing) can reveal valuable information in the absence of source code, such as vulnerability patches, software plagiarism evidence, and malware variant relations. Recently, a new binary diffing method based on symbolic execution and constraint solving has been proposed to look for the code pairs with the same semantics, even though they are ostensibly different in syntactics. Such semantics- based method captures intrinsic differences/similarities of binary code, making it a compelling choice to analyze highly-obfuscated malicious programs. However, due to the nature of symbolic execution, semantics-based bi- nary diffing suffers from significant performance slow- down, hindering it from analyzing large numbers of malware samples. In this paper, we attempt to miti- gate the high overhead of semantics-based binary diff- ing with application to malware lineage inference. We first study the key obstacles that contribute to the performance bottleneck. Then we propose normalized basic block memoization to speed up semantics-based binary diffing. We introduce an unionfind set structure that records semantically equivalent basic blocks. Managing the union-find structure during successive comparisons allows direct reuse of previously computed results. Moreover, we utilize a set of enhanced optimization methods to further cut down the invocation numbers of constraint solver. We have implemented our tech- nique, called MalwareHunt, on top of a trace-oriented binary diffing tool and evaluated it on 15 polymorphic and metamorphic malware families. We perform intra- family comparisons for the purpose of malware lineage inference. Our experimental results show that Malware- Huntcan accelerate symbolic execution from 2.8X to 5.3X (with an average 4.1X), and reduce constraint solver invocation by a factor of 3.0X to 6.0X (with an average 4.5X).more » « less
-
Ko, Hanseok (Ed.)Malware represents a significant security concern in today’s digital landscape, as it can destroy or disable operating systems, steal sensitive user information, and occupy valuable disk space. However, current malware detection methods, such as static-based and dynamic-based approaches, struggle to identify newly developed ("zero-day") malware and are limited by customized virtual machine (VM) environments. To overcome these limitations, we propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science. Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network. The generated network topologies are input into the GraphSAGE architecture to efficiently distinguish between benign and malicious software applications, with the operation names denoted as node features. Importantly, the GraphSAGE models analyze the network’s topological geometry to make predictions, enabling them to detect state-of-the-art malware and prevent potential damage during execution in a VM. To evaluate our approach, we conduct a study on a dataset comprising source code from 24,376 applications, specifically written in C/C++, sourced directly from widely-recognized malware and various types of benign software. The results show a high detection performance with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 99.85%. Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution when compared to current state-of-the-art malware detection methods. The code is released at https://github.com/HantangZhang/MGN.more » « less
-
With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholder’s, particularly, end user’s security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers for further research on malware detection and prevention using AI.more » « less
-
The detection of zero-day attacks and vulnerabilities is a challenging problem. It is of utmost importance for network administrators to identify them with high accuracy. The higher the accuracy is, the more robust the defense mechanism will be. In an ideal scenario (i.e., 100% accuracy) the system can detect zero-day malware without being concerned about mistakenly tagging benign files as malware or enabling disruptive malicious code running as none-malicious ones. This paper investigates different machine learning algorithms to find out how well they can detect zero-day malware. Through the examination of 34 machine/deep learning classifiers, we found that the random forest classifier offered the best accuracy. The paper poses several research questions regarding the performance of machine and deep learning algorithms when detecting zero-day malware with zero rates for false positive and false negative.more » « less