Ozay, Necmiye; Balzano, Laura; Panagou, Dimitra; Abate, Alessandro
                            (Ed.)
                        
                    
            
                            Many optimal and robust control problems are nonconvex and potentially nonsmooth in their policy optimization forms. In this paper, we introduce the Extended Convex Lifting (ECL) framework, which reveals hidden convexity in classical optimal and robust control problems from a modern optimization perspective. Our ECL framework offers a bridge between nonconvex policy optimization and convex reformulations. Despite non-convexity and non-smoothness, the existence of an ECL for policy optimization not only reveals that the policy optimization problem is equivalent to a convex problem, but also certifies a class of first-order non-degenerate stationary points to be globally optimal. We further show that this ECL framework encompasses many benchmark control problems, including LQR, state-feedback and output-feedback H-infinity robust control. We believe that ECL will also be of independent interest for analyzing nonconvex problems beyond control. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    