skip to main content

Title: Real-Time Tracking of Magnetoencephalographic Neuromarkers during a Dynamic Attention-Switching Task
In the last few years, a large number of experiments have been focused on exploring the possibility of using non-invasive techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), to identify auditory-related neuromarkers which are modulated by attention. Results from several studies where participants listen to a story narrated by one speaker, while trying to ignore a different story narrated by a competing speaker, suggest the feasibility of extracting neuromarkers that demonstrate enhanced phase locking to the attended speech stream. These promising findings have the potential to be used in clinical applications, such as EEG-driven hearing aids. One major challenge in achieving this goal is the need to devise an algorithm capable of tracking these neuromarkers in real-time when individuals are given the freedom to repeatedly switch attention among speakers at will. Here we present an algorithm pipeline that is designed to efficiently recognize changes of neural speech tracking during a dynamic-attention switching task and to use them as an input for a near real-time state-space model that translates these neuromarkers into attentional state estimates with a minimal delay. This algorithm pipeline was tested with MEG data collected from participants who had the freedom to change the focus of their attention more » between two speakers at will. Results suggest the feasibility of using our algorithm pipeline to track changes of attention in near-real time in a dynamic auditory scene. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Page Range or eLocation-ID:
4148 to 4151
Sponsoring Org:
National Science Foundation
More Like this
  1. Voice pitch carries linguistic as well as non-linguistic information. Previous studies have described cortical tracking of voice pitch in clean speech, with responses reflecting both pitch strength and pitch value. However, pitch is also a powerful cue for auditory stream segregation, especially when competing streams have pitch differing in fundamental frequency, as is the case when multiple speakers talk simultaneously. We therefore investigated how cortical speech pitch tracking is affected in the presence of a second, task-irrelevant speaker. We analyzed human magnetoencephalography (MEG) responses to continuous narrative speech, presented either as a single talker in a quiet background, or asmore »a two-talker mixture of a male and a female speaker. In clean speech, voice pitch was associated with a right-dominant response, peaking at a latency of around 100 ms, consistent with previous EEG and ECoG results. The response tracked both the presence of pitch as well as the relative value of the speaker’s fundamental frequency. In the two-talker mixture, pitch of the attended speaker was tracked bilaterally, regardless of whether or not there was simultaneously present pitch in the speech of the irrelevant speaker. Pitch tracking for the irrelevant speaker was reduced: only the right hemisphere still significantly tracked pitch of the unattended speaker, and only during intervals in which no pitch was present in the attended talker’s speech. Taken together, these results suggest that pitch-based segregation of multiple speakers, at least as measured by macroscopic cortical tracking, is not entirely automatic but strongly dependent on selective attention.« less
  2. Changes in task demands can have delayed adverse impacts on performance. This phenomenon, known as the workload history effect, is especially of concern in dynamic work domains where operators manage fluctuating task demands. The existing workload history literature does not depict a consistent picture regarding how these effects manifest, prompting research to consider measures that are informative on the operator's process. One promising measure is visual attention patterns, due to its informativeness on various cognitive processes. To explore its ability to explain workload history effects, participants completed a task in an unmanned aerial vehicle command and control testbed where workloadmore »transitioned gradually and suddenly. The participants’ performance and visual attention patterns were studied over time to identify workload history effects. The eye-tracking analysis consisted of using a recently developed eye-tracking metric called coefficient K , as it indicates whether visual attention is more focal or ambient. The performance results found workload history effects, but it depended on the workload level, time elapsed, and performance measure. The eye-tracking analysis suggested performance suffered when focal attention was deployed during low workload, which was an unexpected finding. When synthesizing these results, they suggest unexpected visual attention patterns can impact performance immediately over time. Further research is needed; however, this work shows the value of including a real-time visual attention measure, such as coefficient K , as a means to understand how the operator manages varying task demands in complex work environments.« less
  3. The current study examined the neural correlates of spatial rotation in eight engineering undergraduates. Mastering engineering graphics requires students to mentally visualize in 3D and mentally rotate parts when developing 2D drawings. Students’ spatial rotation skills play a significant role in learning and mastering engineering graphics. Traditionally, the assessment of students’ spatial skills involves no measurements of neural activity during student performance of spatial rotation tasks. We used electroencephalography (EEG) to record neural activity while students performed the Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised PSVT:R). The two main objectives were to 1) determine whether high versus lowmore »performers on the Revised PSVT:R show differences in EEG oscillations and 2) identify EEG oscillatory frequency bands sensitive to item difficulty on the Revised PSVT:R.  Overall performance on the Revised PSVT:R determined whether participants were considered high or low performers: students scoring 90% or higher were considered high performers (5 students), whereas students scoring under 90% were considered low performers (3 students). Time-frequency analysis of the EEG data quantified power in several oscillatory frequency bands (alpha, beta, theta, gamma, delta) for comparison between low and high performers, as well as between difficulty levels of the spatial rotation problems.   Although we did not find any significant effects of performance type (high, low) on EEG power, we observed a trend in reduced absolute delta and gamma power for hard problems relative to easier problems. Decreases in delta power have been reported elsewhere for difficult relative to easy arithmetic calculations, and attributed to greater external attention (e.g., attention to the stimuli/numbers), and consequently, reduced internal attention (e.g., mentally performing the calculation). In the current task, a total of three spatial objects are presented. An example rotation stimulus is presented, showing a spatial object before and after rotation. A target stimulus, or spatial object before rotation is then displayed. Students must choose one of five stimuli (multiple choice options) that indicates the correct representation of the object after rotation. Reduced delta power in the current task implies that students showed greater attention to the example and target stimuli for the hard problem, relative to the moderate and easy problems. Therefore, preliminary findings suggest that students are less efficient at encoding the target stimuli (external attention) prior to mental rotation (internal attention) when task difficulty increases.  Our findings indicate that delta power may be used to identify spatial rotation items that are especially challenging for students. We may then determine the efficacy of spatial rotation interventions among engineering education students, using delta power as an index for increases in internal attention (e.g., increased delta power). Further, in future work, we will also use eye-tracking to assess whether our intervention decreases eye fixation (e.g., time spent viewing) toward the target stimulus on the Revised PSVT:R. By simultaneously using EEG and eye-tracking, we may identify changes in internal attention and encoding of the target stimuli that are predictive of improvements in spatial rotation skills among engineering education students. « less
  4. Abstract Background How the brain develops accurate models of the external world and generates appropriate behavioral responses is a vital question of widespread multidisciplinary interest. It is increasingly understood that brain signal variability—posited to enhance perception, facilitate flexible cognitive representations, and improve behavioral outcomes—plays an important role in neural and cognitive development. The ability to perceive, interpret, and respond to complex and dynamic social information is particularly critical for the development of adaptive learning and behavior. Social perception relies on oxytocin-regulated neural networks that emerge early in development. Methods We tested the hypothesis that individual differences in the endogenous oxytocinergicmore »system early in life may influence social behavioral outcomes by regulating variability in brain signaling during social perception. In study 1, 55 infants provided a saliva sample at 5 months of age for analysis of individual differences in the oxytocinergic system and underwent electroencephalography (EEG) while listening to human vocalizations at 8 months of age for the assessment of brain signal variability. Infant behavior was assessed via parental report. In study 2, 60 infants provided a saliva sample and underwent EEG while viewing faces and objects and listening to human speech and water sounds at 4 months of age. Infant behavior was assessed via parental report and eye tracking. Results We show in two independent infant samples that increased brain signal entropy during social perception is in part explained by an epigenetic modification to the oxytocin receptor gene ( OXTR ) and accounts for significant individual differences in social behavior in the first year of life. These results are measure-, context-, and modality-specific: entropy, not standard deviation, links OXTR methylation and infant behavior; entropy evoked during social perception specifically explains social behavior only; and only entropy evoked during social auditory perception predicts infant vocalization behavior. Conclusions Demonstrating these associations in infancy is critical for elucidating the neurobiological mechanisms accounting for individual differences in cognition and behavior relevant to neurodevelopmental disorders. Our results suggest that an epigenetic modification to the oxytocin receptor gene and brain signal entropy are useful indicators of social development and may hold potential diagnostic, therapeutic, and prognostic value.« less
  5. Expectation is a powerful mechanism in native-language processing. Less is known about its role in non-native language processing, especially for expectations at the discourse level. This study presents evidence from a story-continuation task, adapted from previous work with native speakers (Rohde et al., 2006), probing next-mention and coherence expectations among Japanese- and Korean-speaking learners of English. As in previous work, verbal aspect (perfective/imperfective) in a context sentence describing a transfer-of-possession event (e.g., Ron gave/was giving a towel to Patrick) modulated participants’ choices of next referents in their continuations. However, this effect was diminished in the non-native compared to the native-speakermore »group, despite comparable performance on an independent task assessing knowledge of verbal aspect in English, and previous evidence for significant effects of aspect on referential patterns in native Japanese and Korean processing (Ueno & Kehler, 2010; Kim et al., 2013). The two groups of speakers were equally sensitive to a cue that does not require predictive processing – the referential form of the story-continuation prompt – in that both groups were significantly more likely to establish reference to the discourse topic/Source of the transfer event for pronoun-initial continuations than for name-initial ones. Moreover, recency played a stronger role in non-native speakers’ referential choices than in those of native speakers. These results suggest that while native speakers engage in proactive discourse processing, non-native speakers are less able to do so, being sufficiently burdened by reactive processes required for information integration that they have only Reduced Ability to Generate Expectations (RAGE).« less