skip to main content


Title: Enlarged growth window for plasmonic silicon-doped InAs using a bismuth surfactant

Semiconductors such as InAs with high dopant concentrations have a variety of applications, including as components of mid-infrared optoelectronic devices. Unfortunately, growth of these materials by molecular beam epitaxy is challenging, requiring high growth rates and low growth temperatures. We show that the use of a bismuth surfactant improves silicon incorporation into InAs while simultaneously reducing the optical scattering rate, increasing the carrier mobility, reducing surface roughness, and enabling growth at higher substrate temperatures and slower growth rates. We explain our findings using microscopic theories of dopant segregation and defect formation in III-V materials.

 
more » « less
Award ID(s):
1606673
NSF-PAR ID:
10129512
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
10
Issue:
2
ISSN:
2159-3930
Page Range / eLocation ID:
Article No. 302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneous self-assembly of III–V nanostructures on inert two-dimensional monolayer materials enables novel hybrid nanosystems with unique properties that can be exploited for low-cost and low-weight flexible optoelectronic and nanoelectronic device applications. Here, the pseudo-van der Waals epitaxy (vdWE) growth parameter space for heterogeneous integration of InAs nanowires (NWs) with continuous films of single layer graphene (SLG) via metalorganic chemical vapor deposition (MOCVD) is investigated. The length, diameter, and number density of NWs, as well as areal coverage of parasitic islands, are quantified as functions of key growth variables including growth temperature, V/III ratio, and total flow rate of metalorganic and hydride precursors. A compromise between self-assembly of high aspect ratio NWs comprising high number density arrays and simultaneous minimization of parasitic growth coverage is reached under a selected set of optimal growth conditions. Exploration of NW crystal structures formed under various growth conditions reveals that a characteristic polytypic and disordered lattice is invariant within the explored parameter space. A growth evolution study reveals a gradual reduction in both axial and radial growth rates within the explored timeframe for the optimal growth conditions, which is attributed to a supply-limited competitive growth regime. Two strategies are introduced for further growth optimization. Firstly, it is shown that the absence of a pre-growth in situ arsine surface treatment results in a reduction of parasitic island coverage by factor of ∼0.62, while NW aspect ratio and number densities are simultaneously enhanced. Secondly, the use of a two-step flow-modulated growth procedure allows for realization of dense fields of high aspect ratio InAs NWs. As a result of the applied studies and optimization of the growth parameter space, the highest reported axial growth rate of 840 nm min −1 and NW number density of ∼8.3 × 10 8 cm −2 for vdWE of high aspect ratio (>80) InAs NW arrays on graphitic surfaces are achieved. This work is intended to serve as a guide for vdWE of self-assembled III–V semiconductor NWs such as In-based ternary and quaternary alloys on functional two-dimensional monolayer materials, toward device applications in flexible optoelectronics and tandem-junction photovoltaics. 
    more » « less
  2. Abstract

    In this work, a low temperature templated liquid phase (LT‐TLP) growth process is presented, that enables one to directly grow high optoelectronic quality single crystalline compound semiconductors (InP and InAs) on amorphous dielectrics at temperatures below 400 °C. Uniquely, the material quality is optimal when InP is grown at 300 °C, a temperature which is low enough to enable back‐end‐of‐line growth on fully fabricated Si complementary metal oxide semiconductor circuits. Using this low‐temperature grown InP, a transistor fabrication process is then entirely carried out at 300 °C or below, and an indium phosphide nanoribbon field effect transistor with excellent on/off ratios is demonstrated, indicating low defect density in the material. Overall, this approach enables growth of large area (tens of micron) single crystal compound semiconductor at low temperatures, establishing a back‐end‐of‐line (BEOL) compatible process for monolithic 3D device integration.

     
    more » « less
  3. A topologically non-trivial band structure and reports of superconductivity have motivated significant investigation into the transport properties of the antiperovskite oxide Sr3SnO. Phase-pure films of Sr3SnO can be grown by molecular beam epitaxy, but they do not have the required extremely high hole-doping densities (>1 × 1021 cm−3) for which superconductivity has been observed in bulk materials. To date, high hole-doping densities have been achieved via inducing strontium deficiency, which inevitably results in impurity phases. Here, we show that indium acts as an effective hole dopant in Sr3SnO and can be used to achieve high hole doping densities in stoichiometric films. Films with carrier densities as high as 1.5 × 1021 cm−3 remain non-superconducting. We, therefore, suggest that Sr3SnO is probably not an intrinsic superconductor. A second question addressed in this work is the measurement of the intrinsic electrical transport properties of Sr3SnO, given its rapid degradation in air. We show that even in inert atmospheres, reducing the time needed for establishing electrical contacts and protecting the Sr3SnO film result in improved electrical properties. We demonstrate low carrier density films (4 × 1018 cm−3) with carrier mobilities of 400 cm2 V−1 s−1 at 10 K.

     
    more » « less
  4. Abstract

    Predictive simulations of the shock‐to‐detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo‐mechanics of EM during the SDT, both macro‐scale response and sub‐grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock‐initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, a physics‐aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock‐initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub‐grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high‐performance and safer energetic materials.

     
    more » « less
  5. Abstract

    Increased global temperatures caused by climate change are causing species to shift their ranges and colonize new sites, creating novel assemblages that have historically not interacted. Species interactions play a central role in the response of ecosystems to climate change, but the role of trophic interactions in facilitating or preventing range expansions is largely unknown.

    The goal of our study was to understand how predators influence the ability of range‐shifting prey to successfully establish in newly available habitat following climate warming. We hypothesized that fish predation facilitates the establishment of colonizing zooplankton populations, because fish preferentially consume larger species that would otherwise competitively exclude smaller‐bodied colonists.

    We conducted a mesocosm experiment with zooplankton communities and their fish predators from lakes of the Sierra Nevada Mountains in California, USA. We tested the effect of fish predation on the establishment and persistence of a zooplankton community when introduced in the presence of higher‐ and lower‐elevation communities at two experimental temperatures in field mesocosms.

    We found that predators reduce the abundance of larger‐bodied residents from the alpine and facilitate the establishment of new lower‐elevation species. In addition, fish predation and warming independently reduced the average body size of zooplankton by up to 30%. This reduction in body size offset the direct effect of warming‐induced increases in population growth rates, leading to no net change in zooplankton biomass or trophic cascade strength.

    We found support for a shift to smaller species with climate change through two mechanisms: (a) the direct effects of warming on developmental rates and (b) size‐selective predation that altered the identity of species’ that could colonize new higher elevation habitat. Our results suggest that predators can amplify the rate of range shifts by consuming larger‐bodied residents and facilitating the establishment of new species. However, the effects of climate warming were dampened by reducing the average body size of community members, leading to no net change in ecosystem function, despite higher growth rates. This work suggests that trophic interactions play a role in the reorganization of regional communities under climate warming.

     
    more » « less