skip to main content


Title: Learning Robust Distance Metric with Side Information via Ratio Minimization of Orthogonally Constrained L21-Norm Distances

Metric Learning, which aims at learning a distance metric for a given data set, plays an important role in measuring the distance or similarity between data objects. Due to its broad usefulness, it has attracted a lot of interest in machine learning and related areas in the past few decades. This paper proposes to learn the distance metric from the side information in the forms of must-links and cannot-links. Given the pairwise constraints, our goal is to learn a Mahalanobis distance that minimizes the ratio of the distances of the data pairs in the must-links to those in the cannot-links. Different from many existing papers that use the traditional squared L2-norm distance, we develop a robust model that is less sensitive to data noise or outliers by using the not-squared L2-norm distance. In our objective, the orthonormal constraint is enforced to avoid degenerate solutions. To solve our objective, we have derived an efficient iterative solution algorithm. We have conducted extensive experiments, which demonstrated the superiority of our method over state-of-the-art.

 
more » « less
Award ID(s):
1652943 1849359
NSF-PAR ID:
10129597
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
3008 to 3014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods. 
    more » « less
  2. Registering functions (curves) using time warpings (re-parameterizations) is central to many computer vision and shape analysis solutions. While traditional registration methods minimize penalized-L2 norm, the elastic Riemannian metric and square-root velocity functions (SRVFs) have resulted in significant improvements in terms of theory and practical performance. This solution uses the dynamic programming algorithm to minimize the L2 norm between SRVFs of given functions. However, the computational cost of this elastic dynamic programming framework – O(nT 2 k) – where T is the number of time samples along curves, n is the number of curves, and k < T is a parameter – limits its use in applications involving big data. This paper introduces a deep-learning approach, named SRVF Registration Net or SrvfRegNet to overcome these limitations. SrvfRegNet architecture trains by optimizing the elastic metric-based objective function on the training data and then applies this trained network to the test data to perform fast registration. In case the training and the test data are from different classes, it generalizes to the test data using transfer learning, i.e., retraining of only the last few layers of the network. It achieves the state-of-the-art alignment performance albeit at much reduced computational cost. We demonstrate the efficiency and efficacy of this framework using several standard curve datasets. 
    more » « less
  3. Given a set of facilities and clients, and costs to open facilities, the classic facility location problem seeks to open a set of facilities and assign each client to one open facility to minimize the cost of opening the chosen facilities and the total distance of the clients to their assigned open facilities. Such an objective may induce an unequal cost over certain socioeconomic groups of clients (i.e., total distance traveled by clients in such a group). This is important when planning the location of socially relevant facilities such as emergency rooms. In this work, we consider a fair version of the problem where we are given π‘Ÿ clients groups that partition the set of clients, and the distance of a given group is defined as the average distance of clients in the group to their respective open facilities. The objective is to minimize the Minkowski 𝑝-norm of vector of group distances, to penalize high access costs to open facilities across π‘Ÿ groups of clients. This generalizes classic facility location (𝑝 = 1) and the minimization of the maximum group distance (𝑝 = ∞). However, in practice, fairness criteria may not be explicit or even known to a decision maker, and it is often unclear how to select a specific "𝑝" to model the cost of unfairness. To get around this, we study the notion of solution portfolios where for a fixed problem instance, we seek a small portfolio of solutions such that for any Minkowski norm 𝑝, one of these solutions is an 𝑂(1)-approximation. Using the geometric relationship between various 𝑝-norms, we show the existence of a portfolio of cardinality 𝑂(log π‘Ÿ), and a lower bound of (\sqrt{log r}). There may not be common structure across different solutions in this portfolio, which can make planning difficult if the notion of fairness changes over time or if the budget to open facilities is disbursed over time. For example, small changes in 𝑝 could lead to a completely different set of open facilities in the portfolio. Inspired by this, we introduce the notion of refinement, which is a family of solutions for each 𝑝-norm satisfying a combinatorial property. This property requires that (1) the set of facilities open for a higher 𝑝-norm must be a subset of the facilities open for a lower 𝑝-norm, and (2) all clients assigned to an open facility for a lower 𝑝-norm must be assigned to the same open facility for any higher 𝑝-norm. A refinement is 𝛼-approximate if the solution for each 𝑝-norm problem is an 𝛼-approximation for it. We show that it is sufficient to consider only 𝑂(log π‘Ÿ) norms instead of all 𝑝-norms, 𝑝 ∈ [1, ∞] to construct refinements. A natural greedy algorithm for the problem gives a poly(π‘Ÿ)-approximate refinement, which we improve to poly(r^1/\sqrt{log π‘Ÿ})-approximate using a recursive algorithm. We improve this ratio to 𝑂(log π‘Ÿ) for the special case of tree metric for uniform facility open cost. Our recursive algorithm extends to other settings, including to a hierarchical facility location problem that models facility location problems at several levels, such as public works departments and schools. A full version of this paper can be found at https://arxiv.org/abs/2211.14873. 
    more » « less
  4. AIDS is a syndrome caused by the HIV. During the progression of AIDS, a patient's immune system is weakened, which increases the patient's susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multilabel classification problem. Given this multilabel relationship, traditional single-label classification methods often fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this work, we propose a novel multilabel Robust Sample Specific Distance (RSSD) method to identify multiclass HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase (RT) sequence against a given drug nucleoside analog and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of β„“1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, nongreedy iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV type 1 drug resistance data set with over 600 RT sequences and five nucleoside analogs. We compared our method against several state-of-the-art multilabel classification methods, and the experimental results have demonstrated the effectiveness of our proposed method. 
    more » « less
  5. Acquired immunodeficiency syndrome (AIDS) is a syndrome caused by the human immunodeficiency virus (HIV). During the progression of AIDS, a patient’s the immune system is weakened, which increases the patient’s susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multi-label classification problem. Given this multi-class relationship, traditional single-label classification methods usually fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this paper, we propose a novel multi-label Robust Sample Specific Distance (RSSD) method to identify multi-class HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase sequence against a given drug nucleoside analogue and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of β„“1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, non-greedy, iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV-1 drug resistance data set with over 600 RT sequences and five nucleoside analogues. We compared our method against other state-of-the-art multi-label classification methods and the experimental results have demonstrated the effectiveness of our proposed method. 
    more » « less