skip to main content


Title: On Mean-Optimal Robust Linear Discriminant Analysis
Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods.  more » « less
Award ID(s):
1652943 1849359 1932482 2029543
NSF-PAR ID:
10402273
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE International Conference on Data Mining (ICDM)
Page Range / eLocation ID:
1047 to 1052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-rank matrix recovery is a fundamental problem in machine learning with numerous applications. In practice, the problem can be solved by convex optimization namely nuclear norm minimization, or by non-convex optimization as it is well-known that for low-rank matrix problems like matrix sensing and matrix completion, all local optima of the natural non-convex objectives are also globally optimal under certain ideal assumptions. In this paper, we study new approaches for matrix sensing in a semi-random model where an adversary can add any number of arbitrary sensing matrices. More precisely, the problem is to recover a low-rank matrix $X^\star$ from linear measurements $b_i = \langle A_i, X^\star \rangle$, where an unknown subset of the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of the $A_i$'s are chosen adversarially. It is known that in the semi-random model, existing non-convex objectives can have bad local optima. To fix this, we present a descent-style algorithm that provably recovers the ground-truth matrix $X^\star$. For the closely-related problem of semi-random matrix completion, prior work [CG18] showed that all bad local optima can be eliminated by reweighting the input data. However, the analogous approach for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check. Instead, we build on the framework proposed in [KLL$^+$23] for semi-random sparse linear regression, where the algorithm in each iteration reweights the input based on the current solution, and then takes a weighted gradient step that is guaranteed to work well locally. Our analysis crucially exploits the connection between sparsity in vector problems and low-rankness in matrix problems, which may have other applications in obtaining robust algorithms for sparse and low-rank problems. 
    more » « less
  2. null (Ed.)
    The 2-Wasserstein distance (or RMS distance) is a useful measure of similarity between probability distributions with exciting applications in machine learning. For discrete distributions, the problem of computing this distance can be expressed in terms of finding a minimum-cost perfect matching on a complete bipartite graph given by two multisets of points A, B ⊂ ℝ2, with |A| = |B| = n, where the ground distance between any two points is the squared Euclidean distance between them. Although there is a near-linear time relative ∊-approximation algorithm for the case where the ground distance is Euclidean (Sharathkumar and Agarwal, JACM 2020), all existing relative ∊-approximation algorithms for the RMS distance take Ω(n3/2) time. This is primarily because, unlike Euclidean distance, squared Euclidean distance is not a metric. In this paper, for the RMS distance, we present a new ∊-approximation algorithm that runs in O(n^5/4 poly{log n, 1/∊}) time. Our algorithm is inspired by a recent approach for finding a minimum-cost perfect matching in bipartite planar graphs (Asathulla et al, TALG 2020). Their algorithm depends heavily on the existence of sublinear sized vertex separators as well as shortest path data structures that require planarity. Surprisingly, we are able to design a similar algorithm for a complete geometric graph that is far from planar and does not have any vertex separators. Central components of our algorithm include a quadtree-based distance that approximates the squared Euclidean distance and a data structure that supports both Hungarian search and augmentation in sublinear time. 
    more » « less
  3. Abstract

    Conservation translocation projects must carefully balance multiple, potentially competing objectives (e.g. population viability, retention of genetic diversity, delivery of key ecological services) against conflicting stakeholder values and severe time and cost constraints. Advanced decision support tools would facilitate identifying practical solutions.

    We examined how to achieve compromise across competing objectives in conservation translocations via an examination of giant tortoises in the Galapagos Islands with ancestry from the extinct Floreana Island species (Chelonoidis niger). Efforts have begun to populate Floreana Island with tortoises genetically similar to its historical inhabitants while balancing three potentially competing objectives – restoring ecosystem services (sustaining a high tortoise population size), maximizing genome representation of the extinctC. nigerspecies and maintaining a genetically diverse population – under realistic cost constraints.

    We developed a novel approach to this conservation decision problem by coupling an individual‐based simulation model with generalized additive models and global optimization. We identified several incompatibilities among programme objectives, with quasi‐optimal single‐objective solutions (sets of management actions) differing substantially in programme duration, translocation age, incubation temperature (determinant of sex ratio) and the number of individuals directly translocated from the source population.

    Quasi‐optimal single‐objective solutions were able to produce outcomes (i.e. population size and measures of genetic diversity andC. nigergenome representation) to within 75% of their highest simulated outcomes (e.g. highest population size achieved across all simulations) within a cost constraint ofc. $2m USD, but these solutions resulted in severe declines (up to 74% reduction) in outcomes for non‐focal objectives. However, when all programme objectives were equally weighted to produce a multi‐objective solution, all objectives were met to within 90% of the highest achievable mean values across all cost constraints.

    Synthesis and applications. Multi‐objective conservation translocations are likely to encounter complex trade‐offs and conflicts among programme objectives. Here, we developed a novel combination of modelling approaches to identify optimal management strategies. We found that solutions that simultaneously addressed multiple, competing objectives performed better than single‐objective solutions. Our model‐based decision support tool demonstrates that timely, cost‐effective solutions can be identified in cases where management objectives appear to be incompatible.

     
    more » « less
  4. Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory. We give here a complete solution in the special case of linear networks with output dimension one trained using zero noise Bayesian inference with Gaussian weight priors and mean squared error as a negative log-likelihood. For any training dataset, network depth, and hidden layer widths, we find non-asymptotic expressions for the predictive posterior and Bayesian model evidence in terms of Meijer-G functions, a class of meromorphic special functions of a single complex variable. Through novel asymptotic expansions of these Meijer-G functions, a rich new picture of the joint role of depth, width, and dataset size emerges. We show that linear networks make provably optimal predictions at infinite depth: the posterior of infinitely deep linear networks with data-agnostic priors is the same as that of shallow networks with evidence-maximizing data-dependent priors. This yields a principled reason to prefer deeper networks when priors are forced to be data-agnostic. Moreover, we show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth, elucidating the salutary role of increased depth for model selection. Underpinning our results is a novel emergent notion of effective depth, given by the number of hidden layers times the number of data points divided by the network width; this determines the structure of the posterior in the large-data limit. 
    more » « less
  5. Bansal, Nikhil and (Ed.)
    his paper presents universal algorithms for clustering problems, including the widely studied k-median, k-means, and k-center objectives. The input is a metric space containing all potential client locations. The algorithm must select k cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an (α, β)-approximation if for all subsets of clients C', it satisfies sol(C') ≤ α ⋅ opt(C') + β ⋅ mr, where opt(C') is the cost of the optimal solution for clients C' and mr is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of k-median, k-means, and k-center that achieve (O(1), O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other 𝓁_p-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal clustering. 
    more » « less