- PAR ID:
- 10129612
- Date Published:
- Journal Name:
- Journal of Computational Biology
- ISSN:
- 1557-8666
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Acquired immunodeficiency syndrome (AIDS) is a syndrome caused by the human immunodeficiency virus (HIV). During the progression of AIDS, a patient’s the immune system is weakened, which increases the patient’s susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multi-label classification problem. Given this multi-class relationship, traditional single-label classification methods usually fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this paper, we propose a novel multi-label Robust Sample Specific Distance (RSSD) method to identify multi-class HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase sequence against a given drug nucleoside analogue and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of ℓ1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, non-greedy, iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV-1 drug resistance data set with over 600 RT sequences and five nucleoside analogues. We compared our method against other state-of-the-art multi-label classification methods and the experimental results have demonstrated the effectiveness of our proposed method.more » « less
-
Triple-drug therapies have transformed HIV from a fatal condition to a chronic one. These therapies should prevent HIV drug resistance evolution, because one or more drugs suppress any partially resistant viruses. In practice, such therapies drastically reduced, but did not eliminate, resistance evolution. In this article, we reanalyze published data from an evolutionary perspective and demonstrate several intriguing patterns about HIV resistance evolution - resistance evolves (1) even after years on successful therapy, (2) sequentially, often via one mutation at a time and (3) in a partially predictable order. We describe how these observations might emerge under two models of HIV drugs varying in space or time. Despite decades of work in this area, much opportunity remains to create models with realistic parameters for three drugs, and to match model outcomes to resistance rates and genetic patterns from individuals on triple-drug therapy. Further, lessons from HIV may inform other systems.more » « less
-
Abstract Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (−)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (−)-FTC-TP and (−)-3TC-TP and drug resistance by M184V. (−)-FTC-TP and (−)-3TC-TP have higher binding affinities (1/
K d) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (−)-FTC-TP and (−)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3′-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold)K dfor theL -nucleotides and moderately higher (>9-fold)K d for theD -isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (−)-FTC-TP and shifts its triphosphate into a non-productive conformation. -
Abstract Although combination antiretroviral therapy (ART) with three or more drugs is highly effective in suppressing viral load for people with HIV (human immunodeficiency virus), many ART agents may exacerbate mental health‐related adverse effects including depression. Therefore, understanding the effects of combination ART on mental health can help clinicians personalize medicine with less adverse effects to avoid undesirable health outcomes. The emergence of electronic health records offers researchers' unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is challenging due to high dimensionality of the drug combination space, the individual heterogeneity, and sparseness of the observed drug combinations. To address these challenges, we develop a Bayesian nonparametric approach to learn drug combination effect on mental health in people with HIV adjusting for sociodemographic, behavioral, and clinical factors. The proposed method is built upon the subset‐tree kernel that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance‐dependent Chinese restaurant process to cluster heterogeneous populations while considering individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, showing the clinical utility of our model in guiding clinicians to prescribe informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics.
-
Abstract Drug resistance poses a crucial challenge in healthcare, with response rates to chemotherapy and targeted therapy remaining low. Individual patient's resistance is exacerbated by the intricate heterogeneity of tumor cells, presenting significant obstacles to effective treatment. To address this challenge, DrugFormer, a novel graph‐augmented large language model designed to predict drug resistance at single‐cell level is proposed. DrugFormer integrates both serialized gene tokens and gene‐based knowledge graphs for the accurate predictions of drug response. After training on comprehensive single‐cell data with drug response information, DrugFormer model presents outperformance, with higher F1, precision, and recall in predicting drug response. Based on the scRNA‐seq data from refractory multiple myeloma (MM) and acute myeloid leukemia (AML) patients, DrugFormer demonstrates high efficacy in identifying resistant cells and uncovering underlying molecular mechanisms. Through pseudotime trajectory analysisunique drug‐resistant cellular states associated with poor patient outcomes are revealed. Furthermore, DrugFormer identifies potential therapeutic targets, such as COX8A, for overcoming drug resistance across different cancer types. In conclusion, DrugFormer represents a significant advancement in the field of drug resistance prediction, offering a powerful tool for unraveling the heterogeneity of cellular response to drugs and guiding personalized treatment strategies.