skip to main content


Title: Predicting progressions of cognitive outcomes via high-order multi-modal multi-task feature learning
Many existing studies on complex brain disorders, such as Alzheimer's Disease, usually employed regression analysis to associate the neuroimaging measures to cognitive status. However, whether these measures in multiple modalities have the predictive power to infer the trajectory of cognitive performance over time still remain under-explored. In this paper, we propose a high-order multi-modal multi-mask feature learning model to uncover temporal relationship between the longitudinal neuroimaging measures and progressive cognitive output scores. The regularizations through sparsity-induced norms implemented in the proposed learning model enable the selection of only a small number of imaging features over time and capture modality structures for multi-modal imaging markers. The promising experimental results in extensive empirical studies performed on the ADNI cohort have validated the effectiveness of the proposed method.  more » « less
Award ID(s):
1423591 1652943
NSF-PAR ID:
10129617
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Proceedings of IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
Page Range / eLocation ID:
545 to 548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alzheimer's Disease (AD) is a chronic neurodegenerative disease that severely impacts patients' thinking, memory and behavior. To aid automatic AD diagnoses, many longitudinal learning models have been proposed to predict clinical outcomes and/or disease status, which, though, often fail to consider missing temporal phenotypic records of the patients that can convey valuable information of AD progressions. Another challenge in AD studies is how to integrate heterogeneous genotypic and phenotypic biomarkers to improve diagnosis prediction. To cope with these challenges, in this paper we propose a longitudinal multi-modal method to learn enriched genotypic and phenotypic biomarker representations in the format of fixed-length vectors that can simultaneously capture the baseline neuroimaging measurements of the entire dataset and progressive variations of the varied counts of follow-up measurements over time of every participant from different biomarker sources. The learned global and local projections are aligned by a soft constraint and the structured-sparsity norm is used to uncover the multi-modal structure of heterogeneous biomarker measurements. While the proposed objective is clearly motivated to characterize the progressive information of AD developments, it is a nonsmooth objective that is difficult to efficiently optimize in general. Thus, we derive an efficient iterative algorithm, whose convergence is rigorously guaranteed in mathematics. We have conducted extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) data using one genotypic and two phenotypic biomarkers. Empirical results have demonstrated that the learned enriched biomarker representations are more effective in predicting the outcomes of various cognitive assessments. Moreover, our model has successfully identified disease-relevant biomarkers supported by existing medical findings that additionally warrant the correctness of our method from the clinical perspective. 
    more » « less
  2. Brain large-scale dynamics is constrained by the heterogeneity of intrinsic anatomical substrate. Little is known how the spatiotemporal dynamics adapt for the heterogeneous structural connectivity (SC). Modern neuroimaging modalities make it possible to study the intrinsic brain activity at the scale of seconds to minutes. Diffusion magnetic resonance imaging (dMRI) and functional MRI reveals the large-scale SC across different brain regions. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity and exhibits complex neurobiological temporal dynamics which could not be solved by fMRI. However, most of existing multimodal analytical methods collapse the brain measurements either in space or time domain and fail to capture the spatio-temporal circuit dynamics. In this paper, we propose a novel spatio-temporal graph Transformer model to integrate the structural and functional connectivity in both spatial and temporal domain. The proposed method learns the heterogeneous node and graph representation via contrastive learning and multi-head attention based graph Transformer using multimodal brain data (i.e. fMRI, MRI, MEG and behavior performance). The proposed contrastive graph Transformer representation model incorporates the heterogeneity map constrained by T1-to-T2-weighted (T1w/T2w) to improve the model fit to structurefunction interactions. The experimental results with multimodal resting state brain measurements demonstrate the proposed method could highlight the local properties of large-scale brain spatio-temporal dynamics and capture the dependence strength between functional connectivity and behaviors. In summary, the proposed method enables the complex brain dynamics explanation for different modal variants. 
    more » « less
  3. With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer’s Disease (AD), have gained significant attention in recent years. Many prediction models have been studied to relate neuroimaging measures to cognitive status over the progressions when these disease develops. Missing data is one of the biggest challenge in accurate cognitive score prediction of subjects in longitudinal neuroimaging studies. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation for imaging biomarkers that can simultaneously capture both the information conveyed by baseline neuroimaging records and that by progressive variations of varied counts of available follow-up records over time. While the numbers of the brain scans of the participants vary, the learned biomarker representation for every participant is a fixed-length vector, which enable us to use traditional learning models to study AD developments. Our new objective is formulated to maximize the ratio of the summations of a number of L1-norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus we derive a new efficient iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. A performance gain has been achieved to predict four different cognitive scores, when we compare the original baseline representations against the learned representations with enrichments. These promising empirical results have demonstrated improved performances of our new method that validate its effectiveness. 
    more » « less
  4. Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with estimated heritability ranging from 60 to 80 $$\%$$ % . The most straightforward and widely used strategy to identify AD genetic basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be related or specific to the disease outcome. Results We propose a novel method to identify disease-related genetic variants enriched by imaging endophenotypes, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype enriched approach can reveal promising AD genetic variants undetectable using the traditional method. Conclusion We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways from genetic determinants to intermediate brain traits and to phenotypic AD outcomes. 
    more » « less
  5. Alzheimer’s disease (AD) is a degenerative brain disease that affects millions of people around the world. As populations in the United States and worldwide age, the prevalence of Alzheimer’s disease will only increase. In turn, the social and financial costs of AD will create a difficult environment for many families and caregivers across the globe.By combining genetic information, brain scans, and clinical data, gathered over time through the Alzheimer’s Disease Neuroimaging Initiative(ADNI), we propose a newJoint High-Order Multi-Modal Multi-Task Feature Learning method to predict the cognitive performance and diagnosis of patients with and without AD. 
    more » « less