skip to main content


Title: High-quality photon-pair and heralded single-photon generation using periodically-poled thin-film lithium niobate
Photon-pair generation is shown using periodically-poled thin-film lithium niobate waveguides, with coincidences-to-accidentals ratio CAR>67,000 at 41kHz pairs rate, and heralded single-photon generation with g(2)(0)<0.05 at 860kHz herald rate.  more » « less
Award ID(s):
1640968
NSF-PAR ID:
10129665
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Optics + Laser Science APS/DLS 2019
Page Range / eLocation ID:
FTu6A.3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on the generation of single-photon emitters in silicon nitride. We demonstrate monolithic integration of these quantum emitters with silicon nitride waveguides showing a room-temperature off-chip count-rate of ~104counts/s and clear antibunching behavior.

     
    more » « less
  2. Defect-based single photon emitters play an important role in quantum information technologies. Quantum emitters in technologically mature direct wide bandgap semiconductors, such as nitrides, are attractive for on-chip photonic integration. GaN has recently been reported to host bright and photostable defect single photon emitters in the 600–700 nm wavelength range. Spectral diffusion caused by local electric field fluctuation around the emitter limits the photon indistinguishability, which is a key requirement for quantum applications. In this work, we investigate the spectral diffusion properties of GaN defect emitters integrated with a solid immersion lens, employing both spectral domain and time domain techniques through spectroscopy and photon autocorrelation measurements at cryogenic temperature. Our results show that the GaN defect emitter at 10 K exhibits a Gaussian line shape with a linewidth of ∼1 meV while the spectral diffusion characteristic time falls within the range of a few hundred nanoseconds to a few microseconds. We study the dependency of the spectral diffusion rate and Gaussian linewidth on the excitation laser power. Our work provides insight into the ultrafast spectral diffusion in GaN defect-based single photon emitter systems and contributes toward harnessing the potential of these emitters for applications, especially for indistinguishable single photon generation.

     
    more » « less
  3. Inverse design is a powerful tool in wave physics for compact, high-performance devices. To date, applications in photonics have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the “black box” nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at a rate of 1.1 MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications.

     
    more » « less
  4. Abstract

    High-quality sources of single photons are of paramount importance for quantum communication, sensing, and metrology. To these ends, resonantly excited two-level systems based on self-assembled quantum dots have recently generated widespread interest. Nevertheless, we have recently shown that for resonantly excited two-level systems, emission of a photon during the presence of the excitation laser pulse and subsequent re-excitation results in a degradation of the obtainable single-photon purity. Here, we demonstrate that generating single photons from self-assembled quantum dots with a scheme based on two-photon excitation of the biexciton strongly suppresses the re-excitation. Specifically, the pulse-length dependence of the multi-photon error rate reveals a quadratic dependence in contrast to the linear dependence of resonantly excited two-level systems, improving the obtainable multi-photon error rate by several orders of magnitude for short pulses. We support our experiments with a new theoretical framework and simulation methodology to understand few-photon sources.

     
    more » « less
  5. We investigate the interaction of weak light fields with two-dimensional lattices of atoms with high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange processes to long-range Rydberg-state interactions, which span the entire array and can block multiple Rydberg excitations. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. In particular, we find strong anti-bunching of the transmitted light with equal-time pair correlations that decrease exponentially with an increasing range of the Rydberg blockade. Such strong photon-photon interactions in the absence of photon losses open up promising avenues for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons. 
    more » « less