skip to main content

Title: Single-Photon Emitters in SiN Integrated Quantum Photonics

We report on the generation of single-photon emitters in silicon nitride. We demonstrate monolithic integration of these quantum emitters with silicon nitride waveguides showing a room-temperature off-chip count-rate of ~104counts/s and clear antibunching behavior.

; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Quantum 2.0 Conference 2022 Optica Publishing Group 2022
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Silicon nitride has great potential for integrated quantum photonics. We demonstrate monolithic integration of intrinsic quantum emitters in SiN with waveguides which show a room-temperature off-chip count rate of ~104counts/s and clear antibunching behavior.

  2. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µmmore »resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

    « less
  3. We demonstrate the thermo-optic properties of silicon-rich silicon nitride (SRN) films deposited using plasma-enhanced chemical vapor deposition (PECVD). Shifts in the spectral response of Mach-Zehnder interferometers (MZIs) as a function of temperature were used to characterize the thermo-optic coefficients of silicon nitride films with varying silicon contents. A clear relation is demonstrated between the silicon content and the exhibited thermo-optic coefficient in silicon nitride films, with the highest achievable coefficient being as high as (1.65±0.08) ×10−4K-1. Furthermore, we realize an SRN multi-mode interferometer (MMI) based thermo-optic switch with over 20 dB extinction ratio and total power consumption for two-port switching of 50 mW.

  4. There is little literature characterizing the temperature-dependent thermo-optic coefficient (TOC) for low pressure chemical vapor deposition (LPCVD) silicon nitride or plasma enhanced chemical vapor deposition (PECVD) silicon dioxide at temperatures above 300 K. In this study, we characterize these material TOC’s from approximately 300-460 K, yielding values of (2.51 ± 0.08) · 10−5K−1for silicon nitride and (5.67 ± 0.53) · 10−6K−1for silicon oxide at room temperature (300 K). We use a simplified experimental setup and apply an analytical technique to account for thermal expansion during the extraction process. We also show that the waveguide geometry and method used to determine the resonant wavelength have a substantial impact on the precision of our results, a fact which can be used to improve the precision of numerous ring resonator index sensing experiments.

  5. We demonstrated large scale deterministic creation of single photon emitters in annealed silicon nitride on silicon oxide pillars. The estimated single photon emitter yield is approximately 50% with a lateral accuracy of ±85nm.