skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Shoulders of Giants: Continuing the Legacy of Large-Scale Ecosystem Manipulation Experiments in Puerto Rico
There is a long history of experimental research in the Luquillo Experimental Forest in Puerto Rico. These experiments have addressed questions about biotic thresholds, assessed why communities vary along natural gradients, and have explored forest responses to a range of both anthropogenic and non-anthropogenic disturbances. Combined, these studies cover many of the major disturbances that affect tropical forests around the world and span a wide range of topics, including the effects of forest thinning, ionizing radiation, hurricane disturbance, nitrogen deposition, drought, and global warming. These invaluable studies have greatly enhanced our understanding of tropical forest function under different disturbance regimes and informed the development of management strategies. Here we summarize the major field experiments that have occurred within the Luquillo Experimental Forest. Taken together, results from the major experiments conducted in the Luquillo Experimental Forest demonstrate a high resilience of Puerto Rico’s tropical forests to a variety of stressors.  more » « less
Award ID(s):
1831952
PAR ID:
10130140
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Forests
Volume:
10
Issue:
3
ISSN:
1999-4907
Page Range / eLocation ID:
210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Catchments in the Luquillo Experimental Forest (LEF) of Puerto Rico are warm, wet and tropical with steep elevational relief creating gradients in temperature and rainfall. Long‐term objectives of research at the site are to understand how changing climate and disturbance regimes alter hydrological and biogeochemical processes in the montane tropics and to provide information critical for managing and conserving tropical forest ecosystems globally. Measurements of hydrology and meteorology span decades, and currently include temperature, humidity, precipitation, cloud base level, throughfall, groundwater table elevation and stream discharge. The chemistry of rain, throughfall, and streams is measured weekly and lysimeters and wells are sampled monthly to quarterly. Multiple data sets document the effects of major hurricanes including Hugo (1989), Georges (1998) and Maria (2017) on vegetation, biota and catchment biogeochemistry and provide some of the longest available records of biogeochemical fluxes in tropical forests. Here we present an overview of the findings and the data sets that have been generated from the LEF, highlighting their importance for understanding montane tropical watersheds in the context of disturbance and global environmental change. 
    more » « less
  2. Abstract Background and AimsUnderstanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. MethodsWe analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. Key ResultsThe previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. ConclusionsOur study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions. 
    more » « less
  3. Abstract Disturbances like hurricanes can affect diversity and community composition, which may in turn affect ecosystem function. We examined how a simulated hurricane disturbance affected insect communities inhabiting the phytotelma (plant‐held waters) ofHeliconia caribaeain the Luquillo Experimental Forest of eastern Puerto Rico, a tropical island that frequently experiences hurricanes. We hypothesized that disturbance would alter diversity and that largerHeliconiawould attract more species following disturbance due to the area‐diversity relationship described by the Theory of Island Biogeography. Individual flower parts (bracts) ofHeliconiainflorescences (racemes) were artificially disturbed via removal of existing insect communities, then after refilling with water, cohorts ofHeliconiawere destructively sampled biweekly for 6 weeks to assess recolonization patterns of α (bract level), β, and γ (summed across bracts; raceme level) diversity over time and across raceme sizes. Although we found no support for our hypothesis about the effect of raceme size on recolonization, our hypothesis regarding recolonization patterns over time was supported; species richness, evenness, and abundance of bracts increased directly after the disturbance and then decreased below pre‐disturbance levels, and community composition at the raceme level changed significantly over time during recolonization. β Diversity was also greater in smaller racemes compared to larger racemes, suggesting high heterogeneity across bracts ofHeliconiaracemes exacerbated by raceme size and age. Overall, our results highlight the importance of scale and appropriate measurements of diversity (particularly α) in experiments aiming to extrapolate conclusions about the ecological impacts of disturbances across different habitats and ecosystems. 
    more » « less
  4. null (Ed.)
    Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages. 
    more » « less
  5. Abstract Increasing hurricane frequency and intensity with climate change is likely to affect soil organic carbon (C) stocks in tropical forests. We examined the cycling of C between soil pools and with depth at the Luquillo Experimental Forest in Puerto Rico in soils over a 30‐year period that spanned repeated hurricanes. We used a nonlinear matrix model of soil C pools and fluxes (“soilR”) and constrained the parameters with soil and litter survey data. Soil chemistry and stable and radiocarbon isotopes were measured from three soil depths across a topographic gradient in 1988 and 2018. Our results suggest that pulses and subsequent reduction of inputs caused by severe hurricanes in 1989, 1998, and two in 2017 led to faster mean transit times of soil C in 0–10 cm and 35–60 cm depths relative to a modeled control soil with constant inputs over the 30‐year period. Between 1988 and 2018, the occluded C stock increased and δ13C in all pools decreased, while changes in particulate and mineral‐associated C were undetectable. The differences between 1988 and 2018 suggest that hurricane disturbance results in a dilution of the occluded light C pool with an influx of young, debris‐deposited C, and possible microbial scavenging of old and young C in the particulate and mineral‐associated pools. These effects led to a younger total soil C pool with faster mean transit times. Our results suggest that the increasing frequency of intense hurricanes will speed up rates of C cycling in tropical forests, making soil C more sensitive to future tropical forest stressors. 
    more » « less