skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the survivability of drone swarms with flocking and swarming flight patterns using Virtual Reality
It is now possible to deploy swarms of drones with populations in the thousands. There is growing interest in using such swarms for defense, and it has been natural to program them with bio-mimetic motion models such as flocking or swarming. However, these motion models evolved to survive against predators, not enemies with modern firearms. This paper presents experimental data that compares the survivability of several motion models for large numbers of drones. This project tests drone swarms in Virtual Reality (VR), because it is prohibitively expensive, technically complex, and potentially dangerous to fly a large swarm of drones in a testing environment. We model the behavior of drone swarms flying along parametric paths in both tight and scattered formations. We add random motion to the general motion plan to confound path prediction and targeting. We describe an implementation of these flight paths as game levels in a VR environment. We then allow players to shoot at the drones and evaluate the difference between flocking and swarming behavior on drone survivability.  more » « less
Award ID(s):
1553063 1619278
PAR ID:
10130229
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Automation Science and Engineering (IEEE CASE 22-26 August 2019, Vancouver, Canada)
Page Range / eLocation ID:
1718 to 1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrating drones into construction sites can introduce new risks to workers who already work in hazardous environments. Consequently, several recent studies have investigated the safety challenges and solutions associated with this technology integration in construction. However, there is a knowledge gap about effectively communicating such safety challenges to construction professionals and students who may work alongside drones on job sites. In this study, a 360-degree virtual reality (VR) environment was created as a training platform to communicate the safety challenges of worker-drone interactions on construction jobsites. This pilot study assesses the learning effectiveness and user experience of the developed 360 VR worker-drone safety training, which provides an immersive device-agnostic learning experience. The result indicates that such 360 VR learning material could significantly increase the safety knowledge of users while delivering an acceptable user experience in most of its assessment criteria. The outcomes of this study will serve as a valuable resource for improving future worker-drone safety training materials. 
    more » « less
  2. While more and more consumer drones are abused in recent attacks, there is still very little systematical research on countering malicious consumer drones. In this paper, we focus on this issue and develop effective attacks to common autopilot control algorithms to compromise the flight paths of autopiloted drones, e.g., leading them away from its preset paths. We consider attacking an autopiloted drone in three phases: attacking its onboard sensors, attacking its state estimation, and attacking its autopilot algorithms. Several firstphase attacks have been developed (e.g., [1]–[4]); second-phase attacks (including our previous work [5], [6]) have also been investigated. In this paper, we focus on the third-phase attacks. We examine three common autopilot algorithms, and design several attacks by exploiting their weaknesses to mislead a drone from its preset path to a manipulated path. We present the formal analysis of the scope of such manipulated paths. We further discuss how to apply the proposed attacks to disrupt preset drone missions, such as missing a target in searching an area or misleading a drone to intercept another drone, etc. Many potential attacks can be built on top of the proposed attacks. We are currently investigating different models to apply such attacks on common drone missions and also building prototype systems on ArduPilot for real world tests. We will further investigate countermeasures to address the potential damages. 
    more » « less
  3. Although some existing counterdrone measures can disrupt the invasion of certain consumer drone, to the best of our knowledge, none of them can accurately redirect it to a given location for defense. In this paper, we proposed a Drone Position Manipulation (DPM) attack to address this issue by utilizing the vulnerabilities of control and navigation algorithms used on consumer drones. As such drones usually depend on GPS for autopiloting, we carefully spoof GPS signals based on where we want to redirect a drone to, such that we indirectly affect its position estimates that are used by its navigation algorithm. By carefully manipulating these states, we make a drone gradually move to a path based on our requirements. This unique attack exploits the entire stack of sensing, state estimation, and navigation control together for quantitative manipulation of flight paths, different from all existing methods. In addition, we have formally analyzed the feasible range of redirected destinations for a given target. Our evaluation on open-source ArduPilot system shows that DPM is able to not only accurately lead a drone to a redirected destination but also achieve a large redirection range. 
    more » « less
  4. Drones are increasingly being utilized in the construction industry, offering a wide range of applications. As these drones have to work with or alongside construction professionals, this integration could pose new safety risks and psychological impacts on construction professionals. Hence, it is important to understand their perceptions and attitudes towards drones and evaluate the cognitive demand of working with or near drones. Limited research has explored individuals' perceptions of drones, particularly when engaged in construction activities at job sites. This study specifically targets construction students, the future professionals in the field, to understand their responses to drone interactions on job sites. An immersive virtual reality construction site was developed using a VR game engine, allowing construction students to interact with drones while engaging in typical construction activities. Through a user-centered experiment, the influence of drone presence on construction students' attitude, cognitive workload, and perceived safety risk was evaluated. The results suggest that presence of drones did not significantly elevate cognitive load or foster significantly negative attitudes among construction students. Instead, they perceived only mild safety risks, suggesting a general acceptance and adaptability towards drone technology in construction settings. 
    more » « less
  5. The aim of this paper is to explore bioinspired vertiport designs—a hub for drones’ vertical takeoff and landing (VTOL) and servicing, also referred to as a nesting station, docking station, hangar, or landing station—for drone swarms tasked with specific missions. The vertiport system design is inspired by tree structures, with branches represented by capsules that house drones. Solar panels mounted on actuators at the top of the vertiport adjust their orientation to maximize sun exposure, supplying power to the vertiport’s isolated grid for continuous energy day and night. A weather station located at the top transmits data to a computing system, ensuring environmental safety for drone operations. The vertiport’s key components include capsules that open and close during drone launch and landing. Each capsule is equipped with charging contacts for the drones, AprilTags to facilitate precise landing, and a mechanism to center the drone within the capsule upon closure. Designed to protect the drones from environmental conditions, these capsules feature robust structures capable of withstanding harsh weather, ensuring the drones are safeguarded inside. This design highlights the potential of bioinspired approaches in creating efficient vertiport systems. 
    more » « less