- Award ID(s):
- 1643160
- Publication Date:
- NSF-PAR ID:
- 10130725
- Journal Name:
- Journal of Climate
- Volume:
- 33
- Issue:
- 1
- Page Range or eLocation-ID:
- 365 to 389
- ISSN:
- 0894-8755
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Winter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO − ) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO + ), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO − (NAO + ) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO + has a larger component projectingmore »
-
This study examines the relationship between the Madden–Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO) in a limited-area cloud-resolving model with parameterized large-scale dynamics. The model is used to simulate two consecutive MJO events that occurred during the late fall and early winter of 2011. To test the influence of the QBO on the simulated MJO events, various QBO states are imposed via the addition of characteristic wind and temperature anomalies. In experiments with only QBO temperature anomalies imposed (without corresponding zonal wind anomalies) the strength of convection during MJO active phases is amplified for the QBO easterly phase [an anomalously cold tropical tropopause layer (TTL)] compared to the westerly QBO phase (a warm TTL), as measured by outgoing longwave radiation, cloud fraction, and large-scale ascent. This response is qualitatively consistent with the observed MJO–QBO relationship. The response of precipitation is weaker, and is less consistent across variations in the simulation configuration. Experiments with only imposed QBO wind anomalies (without corresponding temperature anomalies) show much weaker effects altogether than those with imposed temperature anomalies, suggesting that TTL temperature anomalies are a key pathway through which the QBO can modulate the MJO. Sensitivity tests indicate that the QBO influence onmore »
-
The Madden–Julian oscillation (MJO) excites strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal (S2S) prediction. A previous study showed that particular MJO phases are characterized by a consistent modulation of geopotential heights in the North Pacific and adjacent regions across different MJO events, and demonstrated that this consistency is beneficial for extended numerical weather forecasts (i.e., lead times of two weeks to one month). In this study, we examine the physical mechanisms that lead some MJO phases to have more consistent teleconnections than others using a linear baroclinic model. The results show that MJO phases 2, 3, 6, and 7 consistently generate Pacific–North American (PNA)-like patterns on S2S time scales while other phases do not. A Rossby wave source analysis is applied and shows that a dipole-like pattern of Rossby wave source on each side of the subtropical jet can increase the pattern consistency of teleconnections due to the constructive interference of similar teleconnection signals. On the other hand, symmetric patterns of Rossby wave source can dramatically reduce the pattern consistency due to destructive interference. A dipole-like Rossby wave source pattern is present most frequently when tropical heating is found in the Indian Ocean or themore »
-
Abstract Three consecutive precipitation extremes emerged in November 2021, including India-Sri Lanka flooding, East Asian blizzard, and Canadian floods. Why the catastrophic events occurred successively and whether they will become more frequent as global warming continues are unknown. Here we show they are organized by an intraseasonal Asian/North American (ANA) teleconnection consisting of two cross-Pacific wave trains fortified by dipolar diabatic heating anomalies (“wet India-dry Philippines”). The dipolar heating anomaly is shaped by multi-scale interaction between a quasi-stationary Madden-Julian Oscillation (MJO) episode and a rapidly developed La Niña over the tropical Asian monsoon region. Numerical experiments suggest that the off-equatorial heating dipole can generate the ANA pattern resembling observations, distinct from the equatorial MJO-induced teleconnection and the La Niña-induced Pacific/North American teleconnection. Philippine cooling stimulates the circum-Pacific wave train, while Indian heating produces the eastward-propagating subtropical wave train. These wave trains persistently steered cross-Pacific atmospheric rivers channeling warm-moisture-laden air to the extratropics. We suggest that the ANA teleconnection could be a new route by which multi-scale interaction between the La Niña and quasi-stationary MJO over the tropical Asian monsoon affects extratropical East Asia and North America. This work provides a unique perspective on understanding the origins of increasing collisions ofmore »
-
Abstract A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (38 days). The slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases. The SPEAR model shows its capability, beyond the propagation, in predicting theirmore »