skip to main content


Title: Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten
Abstract

Polymernetzwerke sind Materialien, die aus vielen kleineren Komponenten aufgebaut sind, die als “Vernetzungspunkte” und “Stränge” bezeichnet werden und über kovalente oder nichtkovalente/supramolekulare Wechselwirkungen miteinander verknüpft sind. Sie gehören zu den vielseitigsten, am häufigsten eingesetzten und wichtigsten Materialien. Von den ersten kommerziellen Polymeren über die Kunststoffrevolution des 20. Jahrhunderts bis in die Gegenwart gibt es nahezu keine Aspekte des modernen Lebens, die nicht von Polymernetzwerken beeinflusst werden. Dennoch müssen noch viele Herausforderungen in Angriff genommen werden, um ein vollständiges Verständnis dieser Materialien zu ermöglichen und ihre Entwicklung für künftige Anwendungen zu fördern, die von Energie‐Harvesting und Energiespeicherung bis zur Gewebezüchtung und additiven Fertigung reichen. Hier geben wir einen Überblick über die Grundlagen der Synthese, Struktur und Eigenschaften von Polymernetzwerken, unter Einbeziehung aktueller Trends auf dem Gebiet. Wir werden außerdem die neuesten Fortschritte bei der Anwendung des Moleküldesigns und der Steuerung der Topologie aufzeigen, um zu demonstrieren, wie ein tiefgehendes Verständnis der Struktur‐Eigenschaft‐Beziehungen zu hochentwickelten Netzwerken mit außergewöhnlichen Eigenschaften führen kann.

 
more » « less
NSF-PAR ID:
10130849
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
13
ISSN:
0044-8249
Page Range / eLocation ID:
p. 5054-5085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Helikale Überstrukturen sind weit verbreitet in der Natur, in synthetischen Polymeren und in supramolekularen Anordnungen. Die Steuerung der Chiralität (der Händigkeit) dynamischer helikaler Überstrukturen molekularer und makromolekularer Systeme durch externe Stimuli ist eine anspruchsvolle Aufgabe, die jedoch große Beachtung findet aufgrund des attraktiven Anwendungspotenzials von Materialien mit morphologieabhängigen, einstellbaren Eigenschaften. Die lichtgesteuerte Chiralitätsumkehr in selbstorganisierten helikalen Überstrukturen (d. h. cholesterischen, chiral‐nematischen Flüssigkristallen) steht derzeit im Mittelpunkt des Interesses, da durch die Umkehr der Händigkeit die Drehrichtung von selektiv reflektiertem, zirkular polarisiertem Licht verändert wird, woraus sich ein breites Anwendungspotenzial ergibt. Hier erörtern wir die aktuellen Entwicklungen bei der Chiralitätsumkehr cholesterischer Flüssigkristalle, die durch photoisomerisierbare chirale molekulare Motoren oder Schalter ermöglicht wird. Es werden verschiedene Klassen chiraler photoresponsiver Dotanden (Gastmoleküle) behandelt, die eine reversible lichtgesteuerte Chiralitätsumkehr helikaler Überstrukturen auf der Basis nematischer Wirtkomponenten bewirken können. Wege zum rationalen Design chiraler molekularer Schalter, welche die Chiralitätsumkehr helikaler Überstrukturen auf der Basis cholesterischer Flüssigkristalle bewirken, werden aufgezeigt. Wir hoffen, mit diesem Aufsatz eine Orientierungshilfe für den gezielten Entwurf weicher Materialien mit Potenzial zur stimuligesteuerten Chiralitätsumkehr und multifunktionaler Wirt‐Gast‐Systeme geben zu können.

     
    more » « less
  2. Abstract

    In den letzten Jahren gab es rasante Fortschritte bei der Synthese von Bleihalogenid‐Perowskit‐Nanokristallen (NCs) für den Einsatz in Solarzellen, Leuchtdioden, Lasern und Photodetektoren. Sie besitzen eine Reihe faszinierender optischer, excitonischer und Ladungstransporteigenschaften, einschließlich hervorragender Photolumineszenz‐Quantenausbeuten (PLQY) und abstimmbaren optischen Bandlücken. Die notwendige Verwendung von Blei, einem toxischen Element, gibt jedoch Anlass zu ernsthafter Besorgnis über die zukünftige kommerzielle Entwicklung. Um das Problem der Toxizität zu lösen, wurden in jüngster Zeit intensive Forschungsarbeiten zur Entwicklung bleifreier Halogenid‐Perowskit(LFHP)‐NCs durchgeführt. In diesem Aufsatz geben wir einen Überblick über die derzeit erforschten LFHP‐NCs mit den Schwerpunkten Kristallstruktur, Synthese, optische Eigenschaften und Umgebungsstabilität (z. B. UV‐, Wärme‐ und Feuchtigkeitsbeständigkeit). Darüber hinaus werden Strategien zur Verbesserung der optischen Eigenschaften und Stabilitäten von LFHP‐NCs sowie deren neueste Anwendungen diskutiert.

     
    more » « less
  3. Abstract

    Aufgrund ihrer einstellbaren Poren und nahezu grenzenlosen Strukturdiversität, die sich aus dem Design verschiedener organischer Linker und metallischer Strukturbaueinheiten ableitet, haben sich Metall‐organische Gerüste (MOFs) in den vergangenen Jahren zu einem intensiv beforschten Gebiet entwickelt. Zu den größten Aufgaben gehören schaltbare MOFs und ihre Anwendung. Schaltbare MOFs sind “intelligente” Materialien, die bei Exposition gegenüber externen Stimuli eine deutliche, reversible, chemische Veränderung ihrer Struktur durchlaufen, was interessante technische Anwendungen ermöglicht. Obwohl dieser Prozess des Schaltens Ähnlichkeiten mit Flexibilität aufweist, haben sich nur sehr wenige Studien speziell mit Schalten beschäftigt, wohingegen sich eine recht große Zahl von Arbeiten und Übersichten mit der Flexibilität in MOFs beschäftigt. Dieser Aufsatz konzentriert sich auf die Eigenschaften und das allgemeine Design schaltbarer MOFs. Dabei wird die Schaltaktivität basierend auf der Ursache des Schaltens beschrieben: Licht, Spincrossover, Redoxchemie, Temperatur und Benetzbarkeit.

     
    more » « less
  4. Abstract

    Fucose ist ein signalgebendes Kohlenhydrat, das am Ende der Glykosylierung angehängt wird. Es ist an einer Reihe von Prozessen beteiligt, z. B. an der Selectin‐abhängigen Leukozytenadhäsion oder an Pathogen‐Rezeptor‐Interaktionen. Massenspektrometrische Verfahren, die üblicherweise zur Bestimmung der Struktur von Glykanen eingesetzt werden, zeigen häufig Fucose‐haltige, chimäre Fragmente, die die Analyse verzerren. Die Umlagerung, die zu diesen Fragmenten führt – oft als Fucose‐Migration bezeichnet – ist seit mehr als 25 Jahren bekannt, aber die chemische Identität des Umlagerungsproduktes bleibt unklar. In dieser Arbeit kombinieren wir Ionenmobilitätsspektrometrie, Massenspektrometrie mit radikalinduzierter Dissoziation, kryogene IR‐Spektroskopie und Computersimulationen mittels Dichtefunktionaltheorie, um das Produkt der Umlagerung der prototypischen Trisaccharide Lewis x und Blutgruppe H2 zu bestimmen. Die Struktursuche ergibt, dass die Fucose, die mit einerα(1→6)‐glykosidischen Bindung an die Galaktose gebunden ist, das wahrscheinlichste Produkt ist.

     
    more » « less
  5. Abstract

    Die Ursprünge der aktivitätsbasierten Sensorik (ABS) liegen in der supramolekularen Chemie und der Entwicklung selektiver chemischer Rezeptoren nach dem Schlüssel‐Schloss‐Prinzip. In kurzer Zeit hat sich daraus ein eigenes Forschungsgebiet entwickelt, in dem die Synthese und Regulierung chemischer Moleküle zur Vermittlung biologischer Signal‐ und Stresskaskaden – insbesondere Metallionen und niedermolekulare Substanzen – untersucht werden. In chemischen Reaktionen wird die unterschiedliche Reaktivität biologischer Moleküle genutzt, um mit selektiven und empfindlichen Synthesemethoden ihre Rolle in komplexen lebenden Systemen aufzuklären. Die große Anwendungsbreite dieses reaktionsgetriebenen Ansatzes erleichtert den Einsatz auf Plattformen für die Bildgebung, von Fluoreszenz und Lumineszenz über Photoakustik und Magnetresonanz bis zur PET. Der Einsatz von ABS‐Methoden wird auch auf weitere Felder ausgeweitet, z. B. für die Suche nach Wirkstoffen und Materialien.

     
    more » « less