skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DC Microgrid Protection: A Comprehensive Review
DC microgrids have attracted significant attention over the last decade in both academia and industry. DC microgrids have demonstrated superiority over AC microgrids with respect to reliability, efficiency, control simplicity, integration of renewable energy sources, and connection of dc loads. Despite these numerous advantages, designing and implementing an appropriate protection system for dc microgrids remains a significant challenge. The challenge stems from the rapid rise of dc fault current which must be extinguished in the absence of naturally occurring zero crossings, potentially leading to sustained arcs. In this paper, the challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods. In each part, a comprehensive review has been carried out. Finally, future trends in the protection of DC microgrids are briefly discussed.  more » « less
Award ID(s):
1650470
PAR ID:
10130894
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Journal of Emerging and Selected Topics in Power Electronics
ISSN:
2168-6777
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microgrid, which is one of the main foundations of the future grid, inherits many properties of the smart grid such as, self‐healing capability, real‐time monitoring, advanced two‐way communication systems, low voltage ride through capability of distributed generator (DG) units, and high penetration of DGs. These substantial changes in properties and capabilities of the future grid result in significant protection challenges such as bidirectional fault current, various levels of fault current under different operating conditions, necessity of standards for automation system, cyber security issues, as well as, designing an appropriate grounding system, fast fault detection/location method, the need for an efficient circuit breaker for DC microgrids. Due to these new challenges in microgrid protection, the conventional protection strategies have to be either modified or substituted with new ones. This study aims to provide a comprehensive review of the protection challenges in AC and DC microgrids and available solutions to deal with them. Future trends in microgrid protection are also briefly discussed. 
    more » « less
  2. null (Ed.)
    Real-time (RT) simulation of power and energy conversion systems allows engineers to interface both simulation- and hardware-based controls using controller hardware-in-the-loop (CHiL) simulation of networks of power electronic converters (PECs) in order to de-risk highly developmental systems such as next generation electrified transportation systems and dc microgrids. CHiL exploration and performance verification moves a design from Technology Readiness Level (TRL) 3 to TRL 4 without incurring significant cost investments in developmental hardware platforms, which otherwise discourages such endeavors. A real-time CHiL simulation platform suitable for explorations of protective equipment, protection schemes and networked PEC dc and mixed dc-ac power distribution architectures must be capable of simulating common-mode behavior, various grounding schemes, and fault transients at sufficiently high resolution. This paper demonstrates this capability using a Latency-Based Linear Multistep Compound (LB-LMC) simulation method implemented in a commercially sustainable, adaptable and expandable FPGA-based test and instrumentation platform. The proposed CHiL platform achieves real-time power system simulations, including detailed switching commutations of networked PECs, with 50 ns resolution, and faithfully produces resonant and transient behaviors associated with line-to-ground (LG) and line-to-line (LL) faults and fault recovery in ungrounded PEC-based dc systems. This resolution in RT cannot be achieved with today’s commercial off-the-shelf CHiL platforms. This paper demonstrates the need for high resolution RT simulation of LG and LL faults within dc systems, and demonstrates a CHiL approach that enables dc protection design explorations and protective control hardware testing while taking into account the realistic aspects that affect fault characteristics in PEC-based dc systems, such as cable current rating and length, cable and PEC parasitic LG capacitance and PEC i... 
    more » « less
  3. DC networks are becoming more popular in a wide range of applications. However, the difficulty in detecting and localizing a high impedance series arc fault presents, a major challenge slowing the wider deployment of dc networks/microgrids. In this paper, a Kalman Filter (KF) based algorithm to monitor the operation of a dc microgrid by estimating the line admittances and consequently detecting/localizing series arc faults is introduced. The proposed algorithm uses voltage and current samples from the nodes in the distribution network to estimate the line admittances. By determining these values, it is possible to quickly isolate the faulted section and reconfigure the network after a fault occurs. Since, the disturbance caused by a high impedance series arc fault spreads across almost the entire microgrid, the KF algorithm is structured to detect the faulted line in the grid with precision. Simulation and Control Hardware in the Loop (CHIL) results are presented demonstrating the feasibility of implementation. 
    more » « less
  4. 100% inverter-based renewable units are becoming more prevalent, introducing new challenges in the protection of microgrids that incorporate these resources. This is particularly due to low fault currents and bidirectional flows. Previous work has studied the protection of microgrids with high penetration of inverter-interfaced distributed generators; however, very few have studied the protection of a 100% inverter-based microgrid. This work proposes machine learning (ML)–based protection solutions using local electrical measurements that consider implementation challenges and effectively combine short-circuit fault detection and type identification. A decision tree method is used to analyze a wide range of fault scenarios. PSCAD/EMTDC simulation environment is used to create a dataset for training and testing the proposed method. The effectiveness of the proposed methods is examined under seven distinct fault types, each featuring varying fault resistance, in a 100% inverter-based microgrid consisting of four inverters. 
    more » « less
  5. null (Ed.)
    In this paper, a detection and localization technique based on dual State and Parameter Estimation (SE and PE respectively) for series dc arc faults is presented. Detection of series arc faults in dc microgrids is challenging due to its low fault current. By using the available set of sensor measurement data over a period of time, a Least Squares (LS) based SE algorithm estimates the dc microgrid's bus voltages and injection currents. Kalman Filter (KF) is then used to estimate the line conductances in the network, which are used to detect and localize (with respect to the faulted line) the series arc fault. Simulation results are presented with different case studies to demonstrate the robustness of the algorithm to normal operating conditions and different number and placement of sensors. Finally, Control Hardware in the Loop (CHIL) results are shown. 
    more » « less