skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The nonsmooth landscape of phase retrieval
Abstract We consider a popular nonsmooth formulation of the real phase retrieval problem. We show that under standard statistical assumptions a simple subgradient method converges linearly when initialized within a constant relative distance of an optimal solution. Seeking to understand the distribution of the stationary points of the problem, we complete the paper by proving that as the number of Gaussian measurements increases, the stationary points converge to a codimension two set, at a controlled rate. Experiments on image recovery problems illustrate the developed algorithm and theory.  more » « less
Award ID(s):
1651851 1740551
PAR ID:
10131002
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, which also produces an estimate of the function. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis-specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event-related potentials derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects that is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age. 
    more » « less
  2. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $$x$$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $$O(\epsilon)$$-estimate of the lower-level solution, in addition to first-order gradient estimators {\it locally unbiased} within the $$\Theta(\epsilon)$$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $$\epsilon$$ stationary point using $$O(\epsilon^{-6}), O(\epsilon^{-4})$$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $$O(\epsilon)$$ with minimal assumptions. We then provide the matching $$\Omega(\epsilon^{-6})$$, $$\Omega(\epsilon^{-4})$$ lower bounds without and with an additional smoothness assumption on $y^*$-aware oracles, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  3. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $$x$$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $$O(\epsilon)$$-estimate of the lower-level solution, in addition to first-order gradient estimators locally unbiased within the $$\Theta(\epsilon)$$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $$\epsilon$$ stationary point using $$O(\epsilon^{-6}), O(\epsilon^{-4})$$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $$O(\epsilon)$$ with minimal assumptions. We then provide the matching $$\Omega(\epsilon^{-6})$$, $$\Omega(\epsilon^{-4})$$ lower bounds without and with an additional smoothness assumption, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  4. null (Ed.)
    ABSTRACT We study the stationary points of the hierarchical three body problem in the planetary limit (m1, m2 ≪ m0) at both the quadrupole and octupole orders. We demonstrate that the extension to octupole order preserves the principal stationary points of the quadrupole solution in the limit of small outer eccentricity e2 but that new families of stable fixed points occur in both prograde and retrograde cases. The most important new equilibria are those that branch off from the quadrupolar solutions and extend to large e2. The apsidal alignment of these families is a function of mass and inner planet eccentricity, and is determined by the relative directions of precession of ω1 and ω2 at the quadrupole level. These new equilibria are also the most resilient to the destabilizing effects of relativistic precession. We find additional equilibria that enable libration of the inner planet argument of pericentre in the limit of radial orbits and recover the non-linear analogue of the Laplace–Lagrange solutions in the coplanar limit. Finally, we show that the chaotic diffusion and orbital flips identified with the eccentric Kozai–Lidov mechanism and its variants can be understood in terms of the stationary points discussed here. 
    more » « less
  5. We develop an analytical framework to characterize the set of optimal ReLU neural networks by reformulating the non-convex training problem as a convex program. We show that the global optima of the convex parameterization are given by a polyhedral set and then extend this characterization to the optimal set of the non-convex training objective. Since all stationary points of the ReLU training problem can be represented as optima of sub-sampled convex programs, our work provides a general expression for all critical points of the non-convex objective. We then leverage our results to provide an optimal pruning algorithm for computing minimal networks, establish conditions for the regularization path of ReLU networks to be continuous, and develop sensitivity results for minimal ReLU networks. 
    more » « less