skip to main content

Search for: All records

Award ID contains: 1651851

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We consider a popular nonsmooth formulation of the real phase retrieval problem. We show that under standard statistical assumptions a simple subgradient method converges linearly when initialized within a constant relative distance of an optimal solution. Seeking to understand the distribution of the stationary points of the problem, we complete the paper by proving that as the number of Gaussian measurements increases, the stationary points converge to a codimension two set, at a controlled rate. Experiments on image recovery problems illustrate the developed algorithm and theory.

  2. Abstract We consider the task of recovering a pair of vectors from a set of rank one bilinear measurements, possibly corrupted by noise. Most notably, the problem of robust blind deconvolution can be modeled in this way. We consider a natural nonsmooth formulation of the rank one bilinear sensing problem and show that its moduli of weak convexity, sharpness and Lipschitz continuity are all dimension independent, under favorable statistical assumptions. This phenomenon persists even when up to half of the measurements are corrupted by noise. Consequently, standard algorithms, such as the subgradient and prox-linear methods, converge at a rapid dimension-independentmore »rate when initialized within a constant relative error of the solution. We complete the paper with a new initialization strategy, complementing the local search algorithms. The initialization procedure is both provably efficient and robust to outlying measurements. Numerical experiments, on both simulated and real data, illustrate the developed theory and methods.« less
  3. Standard results in stochastic convex optimization bound the number of samples that an algorithm needs to generate a point with small function value in expectation. More nuanced high probability guarantees are rare, and typically either rely on “light-tail” noise assumptions or exhibit worse sample complexity. In this work, we show that a wide class of stochastic optimization algorithms for strongly convex problems can be augmented with high confidence bounds at an overhead cost that is only logarithmic in the confidence level and polylogarithmic in the condition number. The procedure we propose, called proxBoost, is elementary and builds on two well-knownmore »ingredients: robust distance estimation and the proximal point method. We discuss consequences for both streaming (online) algorithms and offline algorithms based on empirical risk minimization.« less
  4. null (Ed.)