skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Inference for Stationary Points in Gaussian Process Regression Models for Event-Related Potentials Analysis
Abstract Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, which also produces an estimate of the function. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis-specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event-related potentials derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects that is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age.  more » « less
Award ID(s):
2015569
PAR ID:
10485786
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
79
Issue:
2
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 629-641
Size(s):
p. 629-641
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on speech categorization and phoneme recognition has relied heavily on tasks in which participants listen to stimuli from a speech continuum and are asked to either classify each stimulus (identification) or discriminate between them (discrimination). Such tasks rest on assumptions about how perception maps onto discrete responses that have not been thoroughly investigated. Here, we identify critical challenges in the link between these tasks and theories of speech categorization. In particular, we show that patterns that have traditionally been linked to categorical perception could arise despite continuous underlying perception and that patterns that run counter to categorical perception could arise despite underlying categorical perception. We describe an alternative measure of speech perception using a visual analog scale that better differentiates between processes at play in speech categorization, and we review some recent findings that show how this task can be used to better inform our theories. 
    more » « less
  2. We introduce a method for measuring the correspondence between low-level speech features and human perception, using a cognitive model of speech perception implemented directly on speech recordings. We evaluate two speaker normalization techniques using this method and find that in both cases, speech features that are normalized across speakers predict human data better than unnormalized speech features, consistent with previous research. Results further reveal differences across normalization methods in how well each predicts human data. This work provides a new framework for evaluating low-level representations of speech on their match to human perception, and lays the groundwork for creating more ecologically valid models of speech perception. 
    more » « less
  3. Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression usingtemporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses. 
    more » « less
  4. Rhythm plays an important role in language perception and learning, with infants perceiving rhythmic differences across languages at birth. While the mechanisms underlying rhythm perception in speech remain unclear, one interesting possibility is that these mechanisms are similar to those involved in the perception of musical rhythm. In this work, we adopt a model originally designed for musical rhythm to simulate speech rhythm perception. We show that this model replicates the behavioral results of language discrimination in newborns, and outperforms an existing model of infant language discrimination. We also find that percussives — fast-changing components in the acoustics — are necessary for distinguishing languages of different rhythms, which suggests that percussives are essential for rhythm perception. Our music-inspired model of speech rhythm may be seen as a first step towards a unified theory of how rhythm is represented in speech and music. 
    more » « less
  5. We introduce computational methods that allow for effective estimation of a flexible nonstationary spatial model when the field size is too large to compute the multivariate normal likelihood directly. In this method, the field is defined as a weighted spatially varying linear combination of a globally stationary process and locally stationary processes. Often in such a model, the difficulty in its practical use is in the definition of the boundaries for the local processes, and therefore, we describe one such selection procedure that generally captures complex nonstationary relationships. We generalize the use of a stochastic approximation to the score equations in this nonstationary case and provide tools for evaluating the approximate score in O(n log n ) operations and O(n) storage for data on a subset of a grid. We perform various simulations to explore the effectiveness and speed of the proposed methods and conclude by predicting average daily temperature. Supplementary materials for this article are available online. 
    more » « less