skip to main content


Title: A Flexible Generative Framework for Graph-based Semi-supervised Learning
We consider a family of problems that are concerned about making predictions for the majority of unlabeled, graph-structured data samples based on a small proportion of labeled samples. Relational information among the data samples, often encoded in the graph/network structure, is shown to be helpful for these semi-supervised learning tasks. However, conventional graph-based regularization methods and recent graph neural networks do not fully leverage the interrelations between the features, the graph, and the labels. In this work, we propose a flexible generative framework for graph-based semi-supervised learning, which approaches the joint distribution of the node features, labels, and the graph structure. Borrowing insights from random graph models in network science literature, this joint distribution can be instantiated using various distribution families. For the inference of missing labels, we exploit recent advances of scalable variational inference techniques to approximate the Bayesian posterior. We conduct thorough experiments on benchmark datasets for graph-based semi-supervised learning. Results show that the proposed methods outperform the state-of-the-art models in most settings.  more » « less
Award ID(s):
1633370
NSF-PAR ID:
10131166
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph-based Semi-Supervised Learning (GSSL) has limitations in widespread applicability due to its computationally prohibitive large-scale inference, sensitivity to data incompleteness, and incapability on handling time-evolving characteristics in an open set. To address these issues, we propose a novel GSSL based on a batch of informative beacons with sparsity appropriately harnessed, rather than constructing the pairwise affinity graph between the entire original samples. Specifically, (1) beacons are placed automatically by unifying the consistence of both data features and labels, which subsequentially act as indicators during the inference; (2) leveraging the information carried by beacons, the sample labels are interpreted as the weighted combination of a subset of characteristics-specified beacons; (3) if unfamiliar samples are encountered in an open set, we seek to expand the beacon set incrementally and update their parameters by incorporating additional human interventions if necessary. Experimental results on real datasets validate that our algorithm is effective and efficient to implement scalable inference, robust to sample corruptions, and capable to boost the performance incrementally in an open set by updating the beacon-related parameters. 
    more » « less
  2. Semi-supervised relational learning methods aim to classify nodes in a partially-labeled graph. While popular, existing methods using Graph Neural Networks (GNN) for semi-supervised relational learning have mainly focused on learning node representations by aggregating nearby attributes, and it is still challenging to leverage inferences about unlabeled nodes with few attributes—particularly when trying to exploit higher-order relationships in the network efficiently. To address this, we propose a Graph Neural Network architecture that incorporates patterns among the available class labels and uses (1) a Role Equivalence attention mechanism and (2) a mini-batch importance sampling method to improve efficiency when learning over high-order paths. In particular, our Role Equivalence attention mechanism is able to use nodes’ roles to learn how to focus on relevant distant neighbors, in order to adaptively reduce the increased noise that occurs when higher-order structures are considered. In experiments on six different real-world datasets, we show that our model (REGNN) achieves significant performance gains compared to other recent state-of-the-art baselines, particularly when higher-order paths are considered in the models. 
    more » « less
  3. Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based on both explanatory features and surface topology. The problem is important in many spatial and spatiotemporal applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular deep convolutional neural networks; second, there exists topological structure dependency between pixel classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery into patches and consider the elevation as an additional feature channel. These methods do not fully incorporate the spatial topological structural constraint within and across surface patches and thus often show poor results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised learning for earth imagery often focus on learning representation without explicitly incorporating surface topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a terrain surface with a contour tree from computational topology, which is guided by the physical constraint (e.g., water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN) to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show that the proposed models outperform baseline methods in classification accuracy, especially when training labels are limited. 
    more » « less
  4. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification. 
    more » « less
  5. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification. 
    more » « less