Flood mapping on Earth imagery is crucial for disaster management, but its efficacy is hampered by the lack of high-quality training labels. Given high-resolution Earth imagery with coarse and noisy training labels, a base deep neural network model, and a spatial knowledge base with label constraints, our problem is to infer the true high-resolution labels while training neural network parameters. Traditional methods are largely based on specific physical properties and thus fall short of capturing the rich domain constraints expressed by symbolic logic. Neural-symbolic models can capture rich domain knowledge, but existing methods do not address the unique spatial challenges inherent in flood mapping on high-resolution imagery. To fill this gap, we propose a spatial-logic-aware weakly supervised learning framework. Our framework integrates symbolic spatial logic inference into probabilistic learning in a weakly supervised setting. To reduce the time costs of logic inference on vast high-resolution pixels, we propose a multi-resolution spatial reasoning algorithm to infer true labels while training neural network parameters. Evaluations of real-world flood datasets show that our model outperforms several baselines in prediction accuracy. The code is available at https://github.com/spatialdatasciencegroup/SLWSL. 
                        more » 
                        « less   
                    
                            
                            Earth Imagery Segmentation on Terrain Surface with Limited Training Labels: A Semi-supervised Approach based on Physics-Guided Graph Co-Training
                        
                    
    
            Given earth imagery with spectral features on a terrain surface, this paper studies surface segmentation based on both explanatory features and surface topology. The problem is important in many spatial and spatiotemporal applications such as flood extent mapping in hydrology. The problem is uniquely challenging for several reasons: first, the size of earth imagery on a terrain surface is often much larger than the input of popular deep convolutional neural networks; second, there exists topological structure dependency between pixel classes on the surface, and such dependency can follow an unknown and non-linear distribution; third, there are often limited training labels. Existing methods for earth imagery segmentation often divide the imagery into patches and consider the elevation as an additional feature channel. These methods do not fully incorporate the spatial topological structural constraint within and across surface patches and thus often show poor results, especially when training labels are limited. Existing methods on semi-supervised and unsupervised learning for earth imagery often focus on learning representation without explicitly incorporating surface topology. In contrast, we propose a novel framework that explicitly models the topological skeleton of a terrain surface with a contour tree from computational topology, which is guided by the physical constraint (e.g., water flow direction on terrains). Our framework consists of two neural networks: a convolutional neural network (CNN) to learn spatial contextual features on a 2D image grid, and a graph neural network (GNN) to learn the statistical distribution of physics-guided spatial topological dependency on the contour tree. The two models are co-trained via variational EM. Evaluations on the real-world flood mapping datasets show that the proposed models outperform baseline methods in classification accuracy, especially when training labels are limited. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10343344
- Date Published:
- Journal Name:
- ACM Transactions on Intelligent Systems and Technology
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2157-6904
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Flood inundation mapping from Earth imagery plays a vital role in rapid disaster response and national water forecasting. However, the problem is non-trivial due to significant imagery noise and obstacles, complex spatial dependency on 3D terrains, spatial non-stationarity, and high computational cost. Existing machine learning approaches are mostly terrain-unaware and are prone to produce spurious results due to imagery noise and obstacles, requiring significant efforts in post-processing. Recently, several terrain- aware methods were proposed that incorporate complex spatial dependency (e.g., water flow directions on 3D terrains) but they assume that the inferred flood surface level is spatially stationary, making them insufficient for a large heterogeneous geographic area. To address these limitations, this paper proposes a novel spatial learning framework called hidden Markov forest, which decomposes a large heterogeneous area into local stationary zones, represents spatial dependency on 3D terrains via zonal trees (forest), and jointly infers the class map in different zonal trees with spatial regularization. We design efficient inference algorithms based on dynamic programming and multi-resolution filtering. Evaluations on real-world datasets show that our method outperforms baselines and our proposed computational refinement significantly reduces the time cost.more » « less
- 
            Given raster imagery features and imperfect vector training labels with registration uncertainty, this paper studies a deep learning framework that can quantify and reduce the registration uncertainty of training labels as well as train neural network parameters simultaneously. The problem is important in broad applications such as streamline classification on Earth imagery or tissue segmentation on medical imagery, whereby annotating precise vector labels is expensive and time-consuming. However, the problem is challenging due to the gap between the vector representation of class labels and the raster representation of image features and the need for training neural networks with uncertain label locations. Existing research on uncertain training labels often focuses on uncertainty in label class semantics or characterizes label registration uncertainty at the pixel level (not contiguous vectors). To fill the gap, this paper proposes a novel learning framework that explicitly quantifies vector labels' registration uncertainty. We propose a registration-uncertainty-aware loss function and design an iterative uncertainty reduction algorithm by re-estimating the posterior of true vector label locations distribution based on a Gaussian process. Evaluations on real-world datasets in National Hydrography Dataset refinement show that the proposed approach significantly outperforms several baselines in the registration uncertainty estimations performance and classification performance.more » « less
- 
            In recent years, deep learning has achieved tremendous success in image segmentation for computer vision applications. The performance of these models heavily relies on the availability of large-scale high-quality training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., mapping the nationwide river streams for water resource management). Although extensive efforts have been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training labels when transferring a pre-trained model from one region to another. On the other hand, it is often much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural network on imperfect labels with geometric annotation errors could significantly impact model performance. Existing research that overcomes imperfect training labels either focuses on errors in label class semantics or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly supervised learning framework to simultaneously update deep learning model parameters and infer hidden true vector label locations. Specifically, we model label location errors in the vector representation to partially reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework outperforms baseline methods in classification accuracy.more » « less
- 
            The accurate and prompt mapping of flood-affected regions is important for effective disaster management, including damage assessment and relief efforts. While high-resolution optical imagery from satellites during disasters presents an opportunity for automated flood inundation mapping, existing segmentation models face challenges due to noises such as cloud cover and tree canopies. Thanks to the digital elevation model (DEM) data readily available from sources such as United States Geological Survey (USGS), terrain guidance was utilized by recent graphical models such as hidden Markov trees (HMTs) to improve segmentation quality. Unfortunately, these methods either can only handle a small area where water levels at different locations are assumed to be consistent or require restricted assumptions such as there is only one river channel. This article presents an algorithm for flood extent mapping on large-scale Earth imagery, applicable to a large geographic area with multiple river channels. Since water level can vary a lot from upstream to downstream, we propose to detect river pixels to partition the remaining pixels into localized zones, each with a unique water level. In each zone, water at all locations flows to the same river entry point. Pixels in each zone are organized by an HMT to capture water flow directions guided by elevations. Moreover, a novel regularization scheme is designed to enforce inter-zone consistency by penalizing pixel-pairs of adjacent zones that violate terrain guidance. Efficient parallelization is made possible by coloring the zone adjacency graph to identify zones and zone-pairs that have no dependency and hence can be processed in parallel, and incremental one-pass terrain-guided scanning is conducted wherever applicable to reuse computations. Experiments demonstrate that our solution is more accurate than existing solutions and can efficiently and accurately map out flooding pixels in a giant area of size 24,805 × 40,129. Despite the imbalanced workloads caused by a few large zonal HMTs dominating the serial computing time, our parallelization approach is effective and manages to achieve up to 14.3× speedup on a machine with Intel Xeon Gold 6126 CPU @ 2.60 GHz (24 cores, 48 threads) using 32 threads.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    