- NSF-PAR ID:
- 10131283
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 23
- Issue:
- 7
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 2965 to 2982
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Managed aquifer recharge (MAR) is typically used to enhance the agricultural water supply but may also be promising to maintain summer streamflows and temperatures for cold-water fish. An existing aquifer model, water temperature data, and analysis of water administration were used to assess potential benefits of MAR to cold-water fisheries in Idaho’s Snake River. This highly-regulated river supports irrigated agriculture worth US $10 billion and recreational trout fisheries worth $100 million. The assessment focused on the Henry’s Fork Snake River, which receives groundwater from recharge incidental to irrigation and from MAR operations 8 km from the river, addressing (1) the quantity and timing of MAR-produced streamflow response, (2) the mechanism through which MAR increases streamflow, (3) whether groundwater inputs decrease the local stream temperature, and (4) the legal and administrative hurdles to using MAR for cold-water fisheries conservation in Idaho. The model estimated a long-term 4%–7% increase in summertime streamflow from annual MAR similar to that conducted in 2019. Water temperature observations confirmed that recharge increased streamflow via aquifer discharge rather than reduction in river losses to the aquifer. In addition, groundwater seeps created summer thermal refugia. Measured summer stream temperature at seeps was within the optimal temperature range for brown trout, averaging 14.4 °C, whereas ambient stream temperature exceeded 19 °C, the stress threshold for brown trout. Implementing MAR for fisheries conservation is challenged by administrative water rules and regulations. Well-developed and trusted water rights and water-transaction systems in Idaho and other western states enable MAR. However, in Idaho, conservation groups are unable to engage directly in water transactions, hampering MAR for fisheries protection.more » « less
-
We quantified stream temperature response to in‐stream habitat restoration designed to improve thermal suitability and resiliency of a high‐elevation Appalachian stream known to support a temperature‐limited brook trout population. Our specific objectives were to determine if: (1) construction of deep pools created channel unit‐scale thermal refugia and (2) reach scale stream channel reconfiguration reduced peak water temperatures along a longitudinal continuum known to be highly susceptible to summer‐time warming. Contrary to expectations, constructed pools did not significantly decrease channel unit‐scale summer water temperatures relative to paired control sites. This suggests that constructed pools did not successfully intercept a cool groundwater source. However, we did find a significant effect of stream channel restoration on reach‐scale thermal regimes. Both mean and maximum daily stream temperatures experienced significantly reduced warming trends in restored sections relative to control sections. Furthermore, we found that restoration efforts had the greatest effect on stream temperatures downstream of large tributaries. Restoration appears to have significantly altered thermal regimes within upper Shavers Fork, largely in response to changes in channel morphology that facilitated water movement below major cold‐water inputs. Decreased longitudinal warming will likely increase the thermal resiliency of the Shavers Fork main‐stem, sustaining the ability of these key large river habitats to continue supporting critical metapopulation processes (e.g. supplemental foraging and dispersal among tributary populations) in the face of climate change.
-
Abstract Semi‐arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape‐scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (
Populus fremontii )‐Willow (Salix gooddingii ) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud‐based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data‐based calibrations to vegetation structure (leaf‐area index, LAI), and open‐source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach‐scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach‐scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent‐flow stream reaches. At perennial‐flow reaches, ET correlated significantly with temperature, whilst at intermittent‐flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water‐use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities. -
Abstract Rivers are dynamic, complex integrators of their environment, which makes verification of the beneficial outcomes of restoration challenging. Thermal regime is central to habitat suitability and is often a focus in planning and evaluating the impact of restoration and climate resilience. Among these concerns, high summer stream temperature has frequently been identified as a limiting factor for salmon, steelhead, and trout. Our objective was to demonstrate the utility of combining high resolution thermal observation and modelling to evaluate restoration designed to mitigate stream thermal processes. This was demonstrated on the Middle Fork of the John Day River which is a critically impacted salmonid fishery in northeast Oregon, USA. We employed distributed temperature sensing and energy‐balance modelling to define the thermal regime. Restoration was predicted to result in a 0.7°C reduction of peak daily stream temperatures while increasing night temperatures by 0.9°C. This combined modelling and monitoring approach suggests that the 2012 restoration offered relief for native fish species stressed by excessive stream temperatures. This powerful combination of technology can be used in many projects to make optimal use of restoration investments to achieve durable and quantifiable improvements in habitat.
-
Abstract Instream barriers, such as dams, culverts, and diversions, alter hydrologic processes and aquatic habitat. Removing uneconomical and aging instream barriers is increasingly used for river restoration. Historically, selection of barrier removal projects used score‐and‐rank techniques, ignoring cumulative change and the spatial structure of stream networks. Likewise, most water supply models prioritize either human water uses or aquatic habitat, failing to incorporate both human and environmental water use benefits. Here, a dual‐objective optimization model identifies barriers to remove that maximize connected aquatic habitat and minimize water scarcity. Aquatic habitat is measured using monthly average streamflow, temperature, channel gradient, and geomorphic condition as indicators of aquatic habitat suitability. Water scarcity costs are minimized using economic penalty functions while a budget constraint specifies the money available to remove barriers. We demonstrate the approach using a case study in Utah's Weber Basin to prioritize removal of instream barriers for Bonneville cutthroat trout, while maintaining human water uses. Removing 54 instream barriers reconnects about 160 km of quality‐weighted habitat and costs approximately US$10 M. After this point, the cost‐effectiveness of removing barriers to connect river habitat decreases. The modeling approach expands barrier removal optimization methods by explicitly including both economic and environmental water uses.