Shallow coastal ecosystems are threatened by marine heatwaves, but few long-term records exist to quantify these heatwaves. Here, 40-year records of measured water temperature were constructed for a site in a system of shallow bays with documented heatwave impacts and a nearby ocean site; available gridded sea-surface temperature datasets in the region were also examined. Water temperatures at both sites increased significantly though bay temperatures were consistently 3-4°C hotter in summer and colder in winter and were more variable overall, differences not captured in high-resolution gridded sea-surface temperature datasets. There was considerable overlap in heatwave events at the coastal bay and ocean sites. Annual heatwave exposure was similar and significantly increased at both sites while annual heatwave intensity was significantly higher at the bay site owing to the high variance of the daily temperature anomaly there. Event frequency at both sites increased at a rate of about 1 event/decade. Future simulations indicate all heatwave metrics increase, as do days above 28°C, a heat stress threshold for seagrass. Ocean temperatures on the U.S. mid-Atlantic margin have rarely exceeded this threshold, while summer bay temperatures commonly do, allowing ocean exchange with coastal bays to provide thermal relief to bay ecosystems. This will have changed by 2100, creating a thermal environment that threatens seagrass communities in these systems. Documenting such change requires development of long-term water temperature records in more shallow coastal systems.
more » « less- Award ID(s):
- 1832221
- NSF-PAR ID:
- 10471085
- Publisher / Repository:
- Frontiers in Marine Ecology
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 10
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Coastal marine heatwaves have destructive and lasting impacts on foundational species 13 and are increasing in frequency, duration, and magnitude. High atmospheric temperatures are 14 often associated with marine heatwaves (MHW) which are defined as 5-days of water 15 temperatures above a seasonally varying 90th percentile threshold. In this study we consider the 16 prevalence of MHW propagation into surficial sediments to cause sediment heatwaves (SHW). 17 Within a shallow, subtidal seagrass meadow in Virginia, USA, sediment temperature was 18 measured at hourly intervals at a depth of 5 cm between June 2020-October 2022 at the meadow 19 edge and central meadow interior. The observed sediment temperature, along with a 29-year 20 record of water temperature and water level was used to develop a sediment temperature model 21 for each location. Modeled sediment temperatures were used to identify sediment heatwaves that 22 may thermally stress belowground seagrass. At both meadow locations, sediment heatwave 23 frequency increased at a rate twice that of MHWs in the average global open ocean, coinciding 24 with a 172% increase in the annual number of SHW days, from 11 to 30 days year-1 between 25 1994-2022. Sediment heatwaves at both meadow locations co-occurred with a MHW 79-81% of 26 the time, with nearly all SHWs having a zero day lag. The top 10% most extreme MHWs and 27 SHWs occurred between November and April when thermal stress to seagrass was unlikely. In 28 June 2015 a SHW co-occurred with an anomalously long duration MHW that was associated 29 with a 90% decline in seagrass from this system, suggesting that SHWs may have contributed to 30 the observed seagrass loss. These results document heatwave propagation across the pelagic-31 sediment interface which likely occur broadly in shallow systems with impacts to critical coastal 32 ecosystem processes and species dynamics.more » « less
-
Abstract Seagrass growth and senescence exert a strong influence on flow structure and sediment transport processes in coastal environments. However, most previous studies of seasonal seagrass effects either focused on small‐scale field measurements or did not fully resolve the synergistic effects of flow‐wave‐vegetation‐sediment interaction at a meadow scale. In this study, we applied a coupled Delft3D‐FLOW and SWAN model that included effects of seagrass on flow, waves, and sediment resuspension in a shallow coastal bay to quantify seasonal seagrass impacts on bay dynamics. The model was extensively validated using seasonal field hydrodynamic and suspended sediment data within a seagrass meadow and a nearby unvegetated site. Our results show that seagrass meadows significantly attenuated flow (60%) and waves (20%) and reduced suspended sediment concentration (85%) during summer when its density reached a maximum. Probability density distributions of combined wave‐current bed shear stress within the seagrass meadow indicate that significant reductions in sediment resuspension during summer were mainly caused by flow retardation rather than wave attenuation. Although low‐density seagrass in winter resulted in much smaller reductions in flow and waves compared with summer meadows, small changes in winter seagrass density resulted in large differences in the magnitude of attenuation of flow and shear stress. Similarly, while high seagrass densities effectively trapped sediment during summer, small changes in winter density resulted in strong changes in net sediment flux into/out of the meadow. At our study site, low seagrass densities provided significant reductions in wintertime sediment loss compared to losses associated with completely unvegetated conditions.
-
In June 2015, a marine heatwave triggered a severe eelgrass
Zostera marina die-off event at the Virginia Coast Reserve (USA), followed by a slow and spatially heterogeneous recovery. We investigated the effects of heat stress on seagrass loss and recovery. Using hourly summer water temperature measurements from 2016-2020, we developed a novel approach to quantifying the stress of ocean warming on seagrass meadows. We defined 2 metrics: cumulative heat stress (as heating degree-hours, HDHs) and heat stress relief (as cooling degree-hours, CDHs), relative to a 28.6°C eelgrass ecosystem thermal tolerance threshold previously determined at this site from aquatic eddy covariance measurements. These metrics were compared to spatiotemporal patterns of summertime eelgrass shoot density and length. We found that the healthiest parts of the meadow benefited from greater heat stress relief (2-3×) due to tidal cooling (inputs of cooler ocean water through ocean inlets) during warm periods, resulting in ~65% higher shoot densities compared to the center of the meadow, which experienced higher heat stress (2×) and less relief. We also calculated the amount of heat stress preceding the eelgrass die-off in summer 2015, and found that this event was triggered by a cumulative heat stress of ~100-200°C-hours during the peak growing season. Sulfur isotope analyses of eelgrass leaves and sediment also suggested that sulfide toxicity likely contributed to eelgrass decline. Overall, our metrics incorporate physiological heat tolerances with the duration and intensity of heat stress and relief, and thus lay the groundwork for forecasting seagrass meadow vulnerability and resilience to future warming oceans. -
Abstract Subtropical seagrass meadows play a major role in the coastal carbon cycle, but the nature of air–water CO2exchanges over these ecosystems is still poorly understood. The complex physical forcing of air–water exchange in coastal waters challenges our ability to quantify bulk exchanges of CO2and water (evaporation), emphasizing the need for direct measurements. We describe the first direct measurements of evaporation and CO2flux over a calcifying seagrass meadow near Bob Allen Keys, Florida. Over the 78‐d study, CO2emissions were 36% greater during the day than at night, and the site was a net CO2source to the atmosphere of 0.27 ± 0.17
μ mol m−2s−1(x̅ ± standard deviation). A quarter (23%) of the diurnal variability in CO2flux was caused by the effect of changing water temperature on gas solubility. Furthermore, evaporation rates were ~ 10 times greater than precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die‐offs. Evaporation rates were not correlated with solar radiation, but instead with air–water temperature gradient and wind shear. We also confirm the role of convective forcing on night‐time enhancement and day‐time suppression of gas transfer. At this site, temperature trends are regulated by solar heating, combined with shallow water depth and relatively consistent air temperature. Our findings indicate that evaporation and air–water CO2exchange over shallow, tropical, and subtropical seagrass ecosystems may be fundamentally different than in submerged vegetated environments elsewhere, in part due to the complex physical forcing of coastal air–sea gas transfer. -
Dias, João Miguel (Ed.)
The northern portion of Washington’s outer coast—known locally as the Olympic coast—is a dynamic region characterized by seasonal upwelling that predominates during summer interrupted by occasional periods of downwelling. We examined spring-to-fall water temperature records collected along this coast from 2001–2015 from April to October at four nearshore locations (Cape Elizabeth to Makah Bay) that span one degree of latitude and are located within 15 km of the shore. When compared against a long-term climatology created for 2001–2013, seven-day smoothed temperature anomalies of up to 4.5°C at 40 m depth during 2014 and 2015 show short-term warm events lasting 10–20 days. These periods of warming occurred within the well documented marine heatwave in the Northeast Pacific and were about twice the seasonal temperature range in the climatology at that depth. These warm events were strongly correlated with periods of northward long-shore winds and upper ocean currents, consistent with what is expected for the response to downwelling-favorable winds. While our focus
a priori was on 2014 and 2015, we also found large positive temperature events in 2013, which were potentially related to the early stage of the marine heatwave, and in 2011, which did not have a documented marine heatwave. This indicates that near-shore short-term warm events occur during periods of large-scale offshore marine heatwave events, but also can occur in the absence of a large-scale marine heatwave event when downwelling-favorable winds occur during the summer/early fall.