skip to main content


Title: PRECISE 3D STRUCTURING OF POLYMER NANOCOMPOSITES USING TRIAXIAL MAGNETIC FIELDS
Polymer nanocomposites have been sought after for their light weight, high performance (strength-to-mass ratio, renewability, etc.), and multi-functionality (actuation, sensing, protection against lightning strikes, etc.). Nano-/micro-engineering has achieved such advanced properties by controlling crystallinity, phases, and interfaces/interphases; hierarchical structuring, often bio-inspired, has been also implemented. While driven by the advanced properties of nanofillers, properties of polymer nanocomposites are critically affected by their structuring and interfaces/interphases due to their small size (< ~50 nm) and large surface area per volume. Measures of their property improvement by nanofiller addition are often smaller than theoretically predicted. Currently, application of these novel engineered materials is limited because these materials cannot often be made in large sizes without compromising nano-scale organization, and because their multi-scale structure-property relationships are not well understood. In this work, we study precise and fast nanofiller structuring with non-contact and energy-efficient application of oscillating magnetic fields. Magnetic assembly is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanofiller structure throughout the composite volume. In the past, we have demonstrated controlled alignment of nanofillers with tunable inter-assembly distances with application of oscillating one-dimentional magnetic fields (~100s of G), by taking advantage of both magnetic attraction and repulsion. The low oscillation frequency (< 1 Hz) was tuned to achieve maghemite nanofiller alignment patterns, in an epoxy matrix, with different amount of inter-nanofiller contacts with the same nanofiller volume fraction (see Figure 1a). This work was recently expanded to three-dimensional assembly using a triaxial Helmholtz coil system (see Figure 1b); the system can apply the triaxial magnetic fields of varying magnitude (max. ±300G, ±250G, ±180G (x-y-z)) and frequency (0 to 1 Hz, ~0.1 Hz resolution) with controlled phase delay to the sample size of 1.5” x 2.5” x 3.5”(x-y-z). Two model systems are currently studied: maghemite nanofillers in an elastomer for magnetoactuation, and nickel-coated CNTs in an thermoset for mehcniacl and transport property reinforcement. The assembled nanofiller structures are currently characterized by microCT; microCT scan data (see Figure 1b) are segmented through a machine learning algorithm, and will be modeled for their transport properties using a Monte Carlo method. These estimated properties will be compared with the experimentally characterized mechanical, transport, and actuation properties, providing the structure-interphase-property relationships. In future, we plan to integrate these nanocomposites to CFRPs for interlaminar property reinforcement, possibly with an out-of-autoclave composite processing.  more » « less
Award ID(s):
1844670
NSF-PAR ID:
10131364
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Composites
ISSN:
0010-4361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart structures with actuation function are desired for aerospace applications, including morphing airfoils, deployable structures and more. While shape memory alloys and piezoelectric ceramics and polymers are currently a popular smart material options for such applications, magnetoelastomers (MEs) can be uniquely actuated with application of non-contact magnetic field. Magnetoelastomers (MEs), composite materials made of magnetic particles and soft, non-magnetic matrix, can potentially contribute to such smart structures as a light-weight, smart material option with large strain change, fast response time (milliseconds) and anisotropic actuation properties. Other than aerospace applications, MEs, as soft actuators, have been investigated for flexible electronics, soft robotics, and biomedical applications. Anisotropic actuation properties of MEs can be controlled with particle organization within the elastomer. To provide this control, parametric studies on fabrication of MEs need to be performed. This study presents experimental work on nanoparticle organization within MEs using uniaxial, biaxial and triaxial magnetic fields and on the structure-property relationships of MEs. Iron oxide nanoparticles were used as a model nanofillers, and their surfaces were treated with silane coupling agent to improve dispersion and suspension within a polydimethylsiloxane (PDMS) elastomer. The fabricated MEs were inspected using microCT, and their anisotropic susceptibilities are being measured. 
    more » « less
  2. Polymer-derived ceramic (PDC) nanocomposites enable access to a large library of functional properties starting from molecular design and incorporating nanofillers. Tailoring preceramic polymer (PCP) chemistry and nanofiller size and morphology can lead to usage of the nanocomposites in complex shapes and coatings with enhanced thermal and mechanical properties. A rational design of targeted nanocomposites requires an understanding of fundamental structure–property–performance relations. Thus, we tailor our discussions of PCP design and nanofiller integration into single source precursors as well as pyrolytic processing for functionalizing PDCs. We also discuss the promises and limitations of advanced characterization techniques such as 4D transmission electron microscopy and pair distribution functions to enable in situ mapping structural evolution. The feedback loop of in situ monitoring sets the foundation for enabling accelerated materials discovery with artificial intelligence. This perspective assesses the recent progress of PDC nanocomposite research nanocomposites and presents scientific and engineering challenges for synthesis, fabrication, processing, and advanced characterization of PDC nanocomposites for enhanced magnetic, electrical, and energy conversion and storage properties. 
    more » « less
  3. null (Ed.)
    Polymer nanocomposites containing nanoscale fillers are an important class of materials due to their ability to access a wide variety of properties as a function of their composition. In order to take full advantage of these properties, it is critical to control the distribution of nanofillers within the parent polymer matrix, as this structural organization affects how the two constituent components interact with one another. In particular, new methods for generating ordered arrays of nanofillers represent a key underexplored research area, as emergent properties arising from nanoscale ordering can be used to introduce novel functionality currently inaccessible in random composites. The knowledge gained from developing such methods will provide important insight into the thermodynamics and kinetics associated with nanomaterial and polymer assembly. These insights will not only benefit researchers working on new composite materials, but will also deepen our understanding of soft matter systems in general. In this review, we summarize contemporary research efforts in manipulating nanofiller organization in polymer nanocomposites and highlight future challenges and opportunities for constructing ordered nanocomposite materials. 
    more » « less
  4. This dataset contains raw data, processed data, and the codes used for data processing in our manuscript from our Fourier-transform infrared (FTIR) spectroscopy, Nuclear magnetic resonance (NMR), Raman spectroscopy, and X-ray diffraction (XRD) experiments. The data and codes for the fits of our unpolarized Raman spectra to polypeptide spectra is also included. The following explains the folder structure of the data provided in this dataset, which is also explained in the file ReadMe.txt. Browsing the data in Tree view is recommended. Folder contents Codes Raman Data Processing: The MATLAB script file RamanDecomposition.m contains the code to decompose the sub-peaks across different polarized Raman spectra (XX, XZ, ZX, ZZ, and YY), considering a set of pre-determined restrictions. The helper functions used in RamanDecomposition.m are included in the Helpers folder. RamanDecomposition.pdf is a PDF printout of the MATLAB code and output. P Value Simulation: 31_helix.ipynb and a_helix.ipynb: These two Jupyter Notebook files contain the intrinsic P value simulation for the 31-helix and alpha-helix structures. The simulation results were used to prepare Supplementary Table 4. See more details in the comments contained. Vector.py, Atom.py, Amino.py, and Helpers.py: These python files contains the class definitions used in 31_helix.ipynb and a_helix.ipynb. See more details in the comments contained. FTIR FTIR Raw Transmission.opj: This Origin data file contains the raw transmission data measured on single silk strand and used for FTIR spectra analysis. FTIR Deconvoluted Oscillators.opj: This Origin data file was generated from the data contained in the previous file using W-VASE software from J. A. Woollam, Inc. FTIR Unpolarized MultiStrand Raw Transmission.opj: This Origin data file contains the raw transmission data measured on multiple silk strands. The datasets contained in the first two files above were used to plot Figure 2a-b and the FTIR data points in Figure 4a, and Supplementary Figure 6. The datasets contained in the third file above were used to plot Supplementary Figure 3a. The datasets contained in the first two files above were used to plot Figure 2a-b, FTIR data points in Figure 4a, and Supplementary Figure 6. NMR Raw data files of the 13C MAS NMR spectra: ascii-spec_CP.txt: cross-polarized spectrum ascii-spec_DP.txt: direct-polarized spectrum Data is in ASCII format (comma separated values) using the following columns: Data point number Intensity Frequency [Hz] Frequency [ppm] Polypeptide Spectrum Fits MATLAB scripts (.m files) and Helpers: The MATLAB script file Raman_Fitting_Process_Part_1.m and Raman_Fitting_Process_Part_2.m contains the step-by-step instructions to perform the fitting process of our calculated unpolarized Raman spectrum, using digitized model polypeptide Raman spectra. The Helper folder contains two helper functions used by the above scripts. See the scripts for further instruction and information. Data aPA.csv, bPA.csv, GlyI.csv, GlyII.csv files: These csv files contain the digitized Raman spectra of poly-alanine, beta-alanine, poly-glycine-I, and poly-glycine-II. Raman_Exp_Data.mat: This MATLAB data file contains the processed, polarized Raman spectra obtained from our experiments. Variable freq is the wavenumber information of each collected spectrum. The variables xx, yy, zz, xz, zx represent the polarized Raman spectra collected. These variables are used to calculate the unpolarized Raman spectrum in Raman_Fitting_Process_Part_2.m. See the scripts for further instruction and information. Raman Raman Raw Data.mat: This MATLAB data file contains all the raw data used for Raman spectra analysis. All variables are of MATLAB structure data type. Each variable has fields called Freq and Raw, with Freq contains the wavenumber information of the measured spectra and Raw contains 5 measured Raman signal strengths. Variable XX, XZ, ZX, ZZ, and YY were used to plot and sub-peak analysis for Figure 2c-d, Raman data points in Figure 4a, Figure 5b, Supplementary Figure 2, and Supplementary Figure 7. Variable WideRange was used to plot and identify the peaks for Supplementary Figure 3b. X-Ray X-Ray.mat: This MATLAB data file contains the raw X-ray data used for the diffraction analysis in Supplementary Figure 5. 
    more » « less
  5. High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.

     
    more » « less