skip to main content


Title: Spatially distributed sampling and reconstruction
A spatially distributed network contains a large amount of agents with limited sensing, data processing, and communication capabilities. Recent technological advances have opened up possibilities to deploy spatially distributed networks for signal sampling and reconstruction. In this paper, we introduce a graph structure for a distributed sampling and reconstruction system by coupling agents in a spatially distributed network with innovative positions of signals. A fundamental problem in sampling theory is the robustness of signal reconstruction in the presence of sampling noises. For a distributed sampling and reconstruction system, the robustness could be reduced to the stability of its sensing matrix. In this paper, we split a distributed sampling and reconstruction system into a family of overlapping smaller subsystems, and we show that the stability of the sensing matrix holds if and only if its quasi-restrictions to those subsystems have uniform stability. This new stability criterion could be pivotal for the design of a robust distributed sampling and reconstruction system against supplement, replacement and impairment of agents, as we only need to check the uniform stability of affected subsystems. In this paper, we also propose an exponentially convergent distributed algorithm for signal reconstruction, that provides a suboptimal approximation to the original signal in the presence of bounded sampling noises.  more » « less
Award ID(s):
1412413
PAR ID:
10131405
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied and computational harmonic analysis
Volume:
47
Issue:
1
ISSN:
1063-5203
Page Range / eLocation ID:
108-148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The focus of this paper is on the finite or infinite dimensional class of spatially distributed linear systems with Hermitian and sparse state matrices. We show that exponential stability of this class of systems can be inferred in a decentralized and spatially localized manner, which is practically relevant to many real-world applications (e.g., systems with spatially discredited PDE models). Then, we obtain several sufficient conditions that allow us to adjust strength of existing couplings in a network in order to sparsify or grow a network, while ensuring global stability. Our proposed necessary and sufficient stability certificates are independent of the dimension of the entire system. Moreover, they only require localized knowledge about the state matrix of the system, which makes these verifiable conditions desirable for design of robust spatially distributed linear systems against subsystem failure and replacement. 
    more » « less
  2. In this paper, we study the robustness property of policy optimization (particularly Gauss–Newton gradient descent algorithm which is equivalent to the policy iteration in reinforcement learning) subject to noise at each iteration. By invoking the concept of input-to-state stability and utilizing Lyapunov’s direct method, it is shown that, if the noise is sufficiently small, the policy iteration algorithm converges to a small neighborhood of the optimal solution even in the presence of noise at each iteration. Explicit expressions of the upperbound on the noise and the size of the neighborhood to which the policies ultimately converge are provided. Based on Willems’ fundamental lemma, a learning-based policy iteration algorithm is proposed. The persistent excitation condition can be readily guaranteed by checking the rank of the Hankel matrix related to an exploration signal. The robustness of the learning-based policy iteration to measurement noise and unknown system disturbances is theoretically demonstrated by the input-to-state stability of the policy iteration. Several numerical simulations are conducted to demonstrate the efficacy of the proposed method. 
    more » « less
  3. This letter addresses the challenge of network synchronization under limited communication, involving heterogeneous agents with different dynamics and various network topologies, to achieve a consensus. We investigate the distributed adaptive control for interconnected unknown linear subsystems with a leader and followers, with the presence of input-output disturbance. We enhance the communication within multi-agent systems to achieve consensus under the leadership’s guidance. While the measured variable is similar among the followers, the incoming measurements are weighted and constructed based on their proximity to the leader. We also explore the convergence rates across various balanced topologies (Star-like, Cyclic-like, Path, Random), featuring different numbers of agents, using distributed first and high-order tuners. Moreover, we conduct several numerical simulations across various networks, agents and tuners to evaluate the effects of sparsity in the interaction between subsystems using the L2− norm and L∞− norm. Some networks exhibit a trend where an increasing number of agents results in smaller errors, although this is not universally the case. Additionally, patterns observed at initial times may not reliably predict overall performance across different networks. Finally, we demonstrate that the proposed modified high-order tuners outperform its counterpart, and we provide related insights along with our conclusions. 
    more » « less
  4. Despite the advent of numerous Internet-of-Things (IoT) applications, recent research demonstrates potential side-channel vulnerabilities exploiting sensors which are used for event and environment monitoring. In this paper, we propose a new side-channel attack, where a network of distributed non-acoustic sensors can be exploited by an attacker to launch an eavesdropping attack by reconstructing intelligible speech signals. Specifically, we present PitchIn to demonstrate the feasibility of speech reconstruction from non-acoustic sensor data collected offline across networked devices. Unlike speech reconstruction which requires a high sampling frequency (e.g., > 5 KHz), typical applications using non-acoustic sensors do not rely on richly sampled data, presenting a challenge to the speech reconstruction attack. Hence, PitchIn leverages a distributed form of Time Interleaved Analog-Digital-Conversion (TIADC) to approximate a high sampling frequency, while maintaining low per-node sampling frequency. We demonstrate how distributed TI-ADC can be used to achieve intelligibility by processing an interleaved signal composed of different sensors across networked devices. We implement PitchIn and evaluate reconstructed speech signal intelligibility via user studies. PitchIn has word recognition accuracy as high as 79%. Though some additional work is required to improve accuracy, our results suggest that eavesdropping using a fusion of non-acoustic sensors is a real and practical threat. 
    more » « less
  5. Abstract

    We present a system identification method based on recursive least-squares (RLS) and coprime collaborative sensing, which can recover system dynamics from non-uniform temporal data. Focusing on systems with fast input sampling and slow output sampling, we use a polynomial transformation to reparameterize the system model and create an auxiliary model that can be identified from the non-uniform data. We show the identifiability of the auxiliary model using a Diophantine equation approach. Numerical examples demonstrate successful system reconstruction and the ability to capture fast system response with limited temporal feedback.

     
    more » « less