The focus of this paper is on the finite or infinite dimensional class of spatially distributed linear systems with Hermitian and sparse state matrices. We show that exponential stability of this class of systems can be inferred in a decentralized and spatially localized manner, which is practically relevant to many real-world applications (e.g., systems with spatially discredited PDE models). Then, we obtain several sufficient conditions that allow us to adjust strength of existing couplings in a network in order to sparsify or grow a network, while ensuring global stability. Our proposed necessary and sufficient stability certificates are independent of the dimension of the entire system. Moreover, they only require localized knowledge about the state matrix of the system, which makes these verifiable conditions desirable for design of robust spatially distributed linear systems against subsystem failure and replacement.
more »
« less
Spatially distributed sampling and reconstruction
A spatially distributed network contains a large amount of agents with limited sensing, data processing, and communication capabilities. Recent technological advances have opened up possibilities to deploy spatially distributed networks for signal sampling and reconstruction. In this paper, we introduce a graph structure for a distributed sampling and reconstruction system by coupling agents in a spatially distributed network with innovative positions of signals. A fundamental problem in sampling theory is the robustness of signal reconstruction in the presence of sampling noises. For a distributed sampling and reconstruction system, the robustness could be reduced to the stability of its sensing matrix. In this paper, we split a distributed sampling and reconstruction system into a family of overlapping smaller subsystems, and we show that the stability of the sensing matrix holds if and only if its quasi-restrictions to those subsystems have uniform stability. This new stability criterion could be pivotal for the design of a robust distributed sampling and reconstruction system against supplement, replacement and impairment of agents, as we only need to check the uniform stability of affected subsystems. In this paper, we also propose an exponentially convergent distributed algorithm for signal reconstruction, that provides a suboptimal approximation to the original signal in the presence of bounded sampling noises.
more »
« less
- Award ID(s):
- 1412413
- PAR ID:
- 10131405
- Date Published:
- Journal Name:
- Applied and computational harmonic analysis
- Volume:
- 47
- Issue:
- 1
- ISSN:
- 1063-5203
- Page Range / eLocation ID:
- 108-148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we study the robustness property of policy optimization (particularly Gauss–Newton gradient descent algorithm which is equivalent to the policy iteration in reinforcement learning) subject to noise at each iteration. By invoking the concept of input-to-state stability and utilizing Lyapunov’s direct method, it is shown that, if the noise is sufficiently small, the policy iteration algorithm converges to a small neighborhood of the optimal solution even in the presence of noise at each iteration. Explicit expressions of the upperbound on the noise and the size of the neighborhood to which the policies ultimately converge are provided. Based on Willems’ fundamental lemma, a learning-based policy iteration algorithm is proposed. The persistent excitation condition can be readily guaranteed by checking the rank of the Hankel matrix related to an exploration signal. The robustness of the learning-based policy iteration to measurement noise and unknown system disturbances is theoretically demonstrated by the input-to-state stability of the policy iteration. Several numerical simulations are conducted to demonstrate the efficacy of the proposed method.more » « less
-
This letter addresses the challenge of network synchronization under limited communication, involving heterogeneous agents with different dynamics and various network topologies, to achieve a consensus. We investigate the distributed adaptive control for interconnected unknown linear subsystems with a leader and followers, with the presence of input-output disturbance. We enhance the communication within multi-agent systems to achieve consensus under the leadership’s guidance. While the measured variable is similar among the followers, the incoming measurements are weighted and constructed based on their proximity to the leader. We also explore the convergence rates across various balanced topologies (Star-like, Cyclic-like, Path, Random), featuring different numbers of agents, using distributed first and high-order tuners. Moreover, we conduct several numerical simulations across various networks, agents and tuners to evaluate the effects of sparsity in the interaction between subsystems using the L2− norm and L∞− norm. Some networks exhibit a trend where an increasing number of agents results in smaller errors, although this is not universally the case. Additionally, patterns observed at initial times may not reliably predict overall performance across different networks. Finally, we demonstrate that the proposed modified high-order tuners outperform its counterpart, and we provide related insights along with our conclusions.more » « less
-
Despite the advent of numerous Internet-of-Things (IoT) applications, recent research demonstrates potential side-channel vulnerabilities exploiting sensors which are used for event and environment monitoring. In this paper, we propose a new side-channel attack, where a network of distributed non-acoustic sensors can be exploited by an attacker to launch an eavesdropping attack by reconstructing intelligible speech signals. Specifically, we present PitchIn to demonstrate the feasibility of speech reconstruction from non-acoustic sensor data collected offline across networked devices. Unlike speech reconstruction which requires a high sampling frequency (e.g., > 5 KHz), typical applications using non-acoustic sensors do not rely on richly sampled data, presenting a challenge to the speech reconstruction attack. Hence, PitchIn leverages a distributed form of Time Interleaved Analog-Digital-Conversion (TIADC) to approximate a high sampling frequency, while maintaining low per-node sampling frequency. We demonstrate how distributed TI-ADC can be used to achieve intelligibility by processing an interleaved signal composed of different sensors across networked devices. We implement PitchIn and evaluate reconstructed speech signal intelligibility via user studies. PitchIn has word recognition accuracy as high as 79%. Though some additional work is required to improve accuracy, our results suggest that eavesdropping using a fusion of non-acoustic sensors is a real and practical threat.more » « less
-
Abstract The National Ecological Observatory Network Terrestrial Observation System (NEON TOS) produces open‐access data products that allow data users to investigate the impact of change drivers on key “sentinel” taxa and soils. The spatial and temporal sampling strategy that coordinates implementation of these protocols enables integration across TOS products and with products generated by NEON aquatic, remote sensing, and terrestrial instrument subsystems. Here, we illustrate the plots and sampling units that make up the physical foundation of a NEON TOS site, and we describe the scales (subplot, plot, airshed, and site) at which sampling is spatially colocated across protocols and subsystems. We also describe how moderate resolution imaging spectroradiometer‐enhanced vegetation index (MODIS‐EVI) phenology data are used to temporally coordinate TOS sampling within and across years at the continental scale of the observatory. Individually, TOS protocols produce data products that provide insight into populations, communities, and ecosystem processes. Within the spatial and temporal framework that guides cross‐protocol implementation, the ability to draw inference across data products is enhanced. To illustrate this point, we develop an example using R software that links two TOS data products collected with different temporal frequencies at both plot and site spatial scales. A thorough understanding of how TOS protocols are integrated with each other in space and time, and with other NEON subsystems, is necessary to leverage NEON data products to maximum effect. For example, a researcher must understand the spatial and temporal scales at which soil biogeochemistry data, soil microbe biomass data, and plant litter production and chemistry data may be combined to quantify soil nutrient stocks and fluxes across NEON sites. We present clear links among TOS protocols and across NEON subsystems that will enhance the utility of NEON TOS data products for the data user community.more » « less
An official website of the United States government

