In this paper, a distributed swarm control problem is studied for large-scale multi-agent systems (LS-MASs). Different than classical multi-agent systems, an LS-MAS brings new challenges to control design due to its large number of agents. It might be more difficult for developing the appropriate control to achieve complicated missions such as collective swarming. To address these challenges, a novel mixed game theory is developed with a hierarchical learning algorithm. In the mixed game, the LS-MAS is represented as a multi-group, large-scale leader–follower system. Then, a cooperative game is used to formulate the distributed swarm control for multi-group leaders, and a Stackelberg game is utilized to couple the leaders and their large-scale followers effectively. Using the interaction between leaders and followers, the mean field game is used to continue the collective swarm behavior from leaders to followers smoothly without raising the computational complexity or communication traffic. Moreover, a hierarchical learning algorithm is designed to learn the intelligent optimal distributed swarm control for multi-group leader–follower systems. Specifically, a multi-agent actor–critic algorithm is developed for obtaining the distributed optimal swarm control for multi-group leaders first. Furthermore, an actor–critic–mass method is designed to find the decentralized swarm control for large-scale followers. Eventually, a series of numerical simulations and a Lyapunov stability proof of the closed-loop system are conducted to demonstrate the performance of the developed scheme.
more »
« less
Distributed Adaptive Control of Disturbed Interconnected Systems With High-Order Tuners
This letter addresses the challenge of network synchronization under limited communication, involving heterogeneous agents with different dynamics and various network topologies, to achieve a consensus. We investigate the distributed adaptive control for interconnected unknown linear subsystems with a leader and followers, with the presence of input-output disturbance. We enhance the communication within multi-agent systems to achieve consensus under the leadership’s guidance. While the measured variable is similar among the followers, the incoming measurements are weighted and constructed based on their proximity to the leader. We also explore the convergence rates across various balanced topologies (Star-like, Cyclic-like, Path, Random), featuring different numbers of agents, using distributed first and high-order tuners. Moreover, we conduct several numerical simulations across various networks, agents and tuners to evaluate the effects of sparsity in the interaction between subsystems using the L2− norm and L∞− norm. Some networks exhibit a trend where an increasing number of agents results in smaller errors, although this is not universally the case. Additionally, patterns observed at initial times may not reliably predict overall performance across different networks. Finally, we demonstrate that the proposed modified high-order tuners outperform its counterpart, and we provide related insights along with our conclusions.
more »
« less
- PAR ID:
- 10535378
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Control Systems Letters
- Volume:
- 8
- ISSN:
- 2475-1456
- Page Range / eLocation ID:
- 1421 to 1426
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Consensus algorithms constitute a powerful tool for computing average values or coordinating agents in many distributed applications. Unfortunately, the same property that allows this computation (i.e., the nontrivial nullspace of the state matrix) leads to unbounded state variance in the presence of measurement errors. In this work, we explore the trade-off between relative and absolute communication (feedback) in the presence of measurement errors. We evaluate the robustness of first and second-order integrator systems under a parameterized family of controllers (homotopy), that continuously trade between relative and absolute feedback interconnections, in terms of the H 2 norm of an appropriately defined input-output system. Our approach extends the previous H 2 norm-based analysis to systems with directed feedback interconnections whose underlying weighted graph Laplacians are diagonalizable. Our results indicate that any level of absolute communication is sufficient to achieve a finite H 2 norm, but purely relative feedback can only achieve finite norms when the measurement error is not exciting the subspace associated with the consensus state. Numerical examples demonstrate that smoothly reducing the proportion of absolute feedback in double integrator systems smoothly decreases the system performance (increases the H 2 norm) and that this performance degradation is more rapid in systems with relative feedback in only the first state (position).more » « less
-
This article delves into the challenges of ensuring stability (in some sense) and robustness in large-scale second-order consensus networks (SOCNs) and autonomous vehicle platoons in the discrete-time domain. We propose a graph-theoretic methodology for designing a state feedback law for these systems in a discrete-time framework. By analyzing the behavior of the solutions of the networks based on the algebraic properties of the Laplacian matrices of the underlying graphs and on the value of the update cycle (also known as the time step) of each vehicle, we provide a necessary and sufficient condition for the stability of a linear second-order consensus network in the discrete-time domain. We then perform an $$\mathcal {H}_{2}$$ -based robustness analysis to demonstrate the relationship between the $$\mathcal {H}_{2}$$ -norm of the system, network size, connectivity, and update cycles, providing insights into how these factors impact the convergence and robustness of the system. A key contribution of this work is the development of a formal framework for understanding the link between an $$\mathcal {H}_{2}$$ -based performance measure and the restrictions on the update cycle of the vehicles. Specifically, we show that denser networks (i.e., networks with more communication links) might require faster agents (i.e., smaller update cycles) to outperform or achieve the same level of robustness as sparse networks (i.e., networks with fewer communication links) - see Fig. 1. These findings have important implications for the design and implementation of large-scale consensus networks and autonomous vehicle platoons, highlighting the need for a balance between network density and update cycle speed for optimal performance. We finish the article with results from simulations and experiments that illustrate the effectiveness of the proposed framework in predicting the behavior of vehicle platoons, even for more complex agents with nonlinear dynamics, using Quanser's Qlabs and Qcars.more » « less
-
We study the cooperative asynchronous multi-agent multi-armed bandits problem, where each agent's active (arm pulling) decision rounds are asynchronous. That is, in each round, only a subset of agents is active to pull arms, and this subset is unknown and time-varying. We consider two models of multi-agent cooperation, fully distributed and leader-coordinated, and propose algorithms for both models that attain near-optimal regret and communications bounds, both of which are almost as good as their synchronous counterparts. The fully distributed algorithm relies on a novel communication policy consisting of accuracy adaptive and on-demand components, and successive arm elimination for decision-making. For leader-coordinated algorithms, a single leader explores arms and recommends them to other agents (followers) to exploit. As agents' active rounds are unknown, a competent leader must be chosen dynamically. We propose a variant of the Tsallis-INF algorithm with low switches to choose such a leader sequence. Lastly, we report numerical simulations of our new asynchronous algorithms with other known baselines.more » « less
-
Abstract This paper introduces a distributed adaptive formation control for large‐scale multi‐agent systems (LS‐MAS) that addresses the heavy computational complexity and communication traffic challenges while directly extending conventional distributed control from small scale to large scale. Specifically, a novel hierarchical game theoretic algorithm is developed to provide a feasible theory foundation for solving LS‐MAS distributed optimal formation problem by effectively integrating the mean‐field game (MFG), the Stackelberg game, and the cooperative game. In particular, LS‐MAS is divided into multiple groups geographically with each having one group leader and a significant amount of followers. Then, a cooperative game is used among multi‐group leaders to formulate distributed inter‐group formation control for leaders. Meanwhile, an MFG is adopted for a large number of intra‐group followers to achieve the collective intra‐group formation while a Stackelberg game is connecting the followers with their corresponding leader within the same group to achieve the overall LS‐MAS multi‐group formation behavior. Moreover, a hybrid actor–critic‐based reinforcement learning algorithm is constructed to learn the solution of the hierarchical game‐based optimal distributed formation control. Finally, to show the effectiveness of the presented schemes, numerical simulations and Lyapunov analysis is performed.more » « less
An official website of the United States government

