skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Distributed Adaptive Control of Disturbed Interconnected Systems With High-Order Tuners
This letter addresses the challenge of network synchronization under limited communication, involving heterogeneous agents with different dynamics and various network topologies, to achieve a consensus. We investigate the distributed adaptive control for interconnected unknown linear subsystems with a leader and followers, with the presence of input-output disturbance. We enhance the communication within multi-agent systems to achieve consensus under the leadership’s guidance. While the measured variable is similar among the followers, the incoming measurements are weighted and constructed based on their proximity to the leader. We also explore the convergence rates across various balanced topologies (Star-like, Cyclic-like, Path, Random), featuring different numbers of agents, using distributed first and high-order tuners. Moreover, we conduct several numerical simulations across various networks, agents and tuners to evaluate the effects of sparsity in the interaction between subsystems using the L2− norm and L∞− norm. Some networks exhibit a trend where an increasing number of agents results in smaller errors, although this is not universally the case. Additionally, patterns observed at initial times may not reliably predict overall performance across different networks. Finally, we demonstrate that the proposed modified high-order tuners outperform its counterpart, and we provide related insights along with our conclusions.  more » « less
Award ID(s):
2208182 2121121
PAR ID:
10535378
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Control Systems Letters
Volume:
8
ISSN:
2475-1456
Page Range / eLocation ID:
1421 to 1426
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Consensus algorithms constitute a powerful tool for computing average values or coordinating agents in many distributed applications. Unfortunately, the same property that allows this computation (i.e., the nontrivial nullspace of the state matrix) leads to unbounded state variance in the presence of measurement errors. In this work, we explore the trade-off between relative and absolute communication (feedback) in the presence of measurement errors. We evaluate the robustness of first and second-order integrator systems under a parameterized family of controllers (homotopy), that continuously trade between relative and absolute feedback interconnections, in terms of the H 2 norm of an appropriately defined input-output system. Our approach extends the previous H 2 norm-based analysis to systems with directed feedback interconnections whose underlying weighted graph Laplacians are diagonalizable. Our results indicate that any level of absolute communication is sufficient to achieve a finite H 2 norm, but purely relative feedback can only achieve finite norms when the measurement error is not exciting the subspace associated with the consensus state. Numerical examples demonstrate that smoothly reducing the proportion of absolute feedback in double integrator systems smoothly decreases the system performance (increases the H 2 norm) and that this performance degradation is more rapid in systems with relative feedback in only the first state (position). 
    more » « less
  2. In this paper, a distributed swarm control problem is studied for large-scale multi-agent systems (LS-MASs). Different than classical multi-agent systems, an LS-MAS brings new challenges to control design due to its large number of agents. It might be more difficult for developing the appropriate control to achieve complicated missions such as collective swarming. To address these challenges, a novel mixed game theory is developed with a hierarchical learning algorithm. In the mixed game, the LS-MAS is represented as a multi-group, large-scale leader–follower system. Then, a cooperative game is used to formulate the distributed swarm control for multi-group leaders, and a Stackelberg game is utilized to couple the leaders and their large-scale followers effectively. Using the interaction between leaders and followers, the mean field game is used to continue the collective swarm behavior from leaders to followers smoothly without raising the computational complexity or communication traffic. Moreover, a hierarchical learning algorithm is designed to learn the intelligent optimal distributed swarm control for multi-group leader–follower systems. Specifically, a multi-agent actor–critic algorithm is developed for obtaining the distributed optimal swarm control for multi-group leaders first. Furthermore, an actor–critic–mass method is designed to find the decentralized swarm control for large-scale followers. Eventually, a series of numerical simulations and a Lyapunov stability proof of the closed-loop system are conducted to demonstrate the performance of the developed scheme. 
    more » « less
  3. This article delves into the challenges of ensuring stability (in some sense) and robustness in large-scale second-order consensus networks (SOCNs) and autonomous vehicle platoons in the discrete-time domain. We propose a graph-theoretic methodology for designing a state feedback law for these systems in a discrete-time framework. By analyzing the behavior of the solutions of the networks based on the algebraic properties of the Laplacian matrices of the underlying graphs and on the value of the update cycle (also known as the time step) of each vehicle, we provide a necessary and sufficient condition for the stability of a linear second-order consensus network in the discrete-time domain. We then perform an $\mathcal {H}_{2}$ -based robustness analysis to demonstrate the relationship between the $\mathcal {H}_{2}$ -norm of the system, network size, connectivity, and update cycles, providing insights into how these factors impact the convergence and robustness of the system. A key contribution of this work is the development of a formal framework for understanding the link between an $\mathcal {H}_{2}$ -based performance measure and the restrictions on the update cycle of the vehicles. Specifically, we show that denser networks (i.e., networks with more communication links) might require faster agents (i.e., smaller update cycles) to outperform or achieve the same level of robustness as sparse networks (i.e., networks with fewer communication links) - see Fig. 1. These findings have important implications for the design and implementation of large-scale consensus networks and autonomous vehicle platoons, highlighting the need for a balance between network density and update cycle speed for optimal performance. We finish the article with results from simulations and experiments that illustrate the effectiveness of the proposed framework in predicting the behavior of vehicle platoons, even for more complex agents with nonlinear dynamics, using Quanser's Qlabs and Qcars. 
    more » « less
  4. We consider distributed consensus in networks where the agents have integrator dynamics of order two or higher (n>=2). We assume all feedback to be localized in the sense that each agent has a bounded number of neighbors and consider a scaling of the network through the addition of agents in a modular manner, i.e., without re-tuning controller gains upon addition. We show that standard consensus algorithms, which rely on relative state feedback, are subject to what we term scale fragilities, meaning that stability is lost as the network scales. For high-order agents (n>=3), we prove that no consensus algorithm with fixed gains can achieve consensus in networks of any size. That is, while a given algorithm may allow a small network to converge, it causes instability if the network grows beyond a certain finite size. This holds in families of network graphs whose algebraic connectivity, that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards zero in network size (e.g. all planar graphs). For second-order consensus (n=2) we prove that the same scale fragility applies to directed graphs that have a complex Laplacian eigenvalue approaching the origin (e.g. directed ring graphs). The proofs for both results rely on Routh–Hurwitz criteria for complex-valued polynomials and hold true for general directed network graphs. We survey classes of graphs subject to these scale fragilities, discuss their scaling constants, and finally prove that a sub-linear scaling of nodal neighborhoods can suffice to overcome the issue. 
    more » « less
  5. We consider the problems of asymptotic stability and robustness in large-scale second-order consensus networks and vehicle platoons in the discrete-time domain. First, we develop a graph-theoretic methodology to design the state feedback law for the second-order consensus networks and vehicle platoons in a discrete-time framework. We analyze the stability of such networks based on algebraic properties of the Laplacian matrices of underlying graphs and each vehicle’s update cycle (also known as the time step). We further provide a necessary and sufficient condition of stability of a linear second-order consensus network in the discrete-time domain. Moreover, we evaluate the robustness of the consensus networks by employing the expected value of the steady-state dispersion of the state of the entire network, also known as squared H2-norm, as a performance measure. We show the connection between performance measures with respect to network size, connectivity, and the update cycle. The main contribution of this work is that we provide a formal framework to quantify the relation between scaling performance measures and restrictions of the vehicles’ update cycles. Specifically, we show that denser networks (i.e., networks with more communications/edges) require faster agents (i.e., smaller update cycles) to outperform or achieve the same level of robustness as sparse networks (i.e., networks with fewer communications/edges). 
    more » « less