skip to main content


Title: Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires

Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm−1for 2.5–3.9-μm-long NWs reveal a series of resonances due to the Fabry–Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to them= 3 andm= 4 Fabry–Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry–Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.

 
more » « less
Award ID(s):
1902403 1502848 1727092 1664684
NSF-PAR ID:
10131480
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
5
ISSN:
0027-8424
Page Range / eLocation ID:
p. 2288-2293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical resonances in nanostructures can be harnessed to produce a wide range of structural colors. Conversely, the analysis of structural colors has been used to clarify the nature of optical resonances. Here, we show that silicon nanowire (NW) pairs can display a wide range of structural colors by controlling their radiative coupling. This is accomplished by exciting a series of Fabry–Pérot-like modes where light is repeatedly scattered between two NWs. These modes are beyond the expectation from the conventional chemical bonding model under a quasi-electrostatic approximation, in which only bonding and antibonding modes can be formed in a pair system through modal hybridization. The additional eigenmodes found in a two-resonator system originate from the nonlinear, frequency-dependent coupling strength derived from the radiative nature of low-Qresonators. The Fabry–Pérot modes can be tuned across the entire visible frequency range by varying the distance between two NWs, leading to what we believe is a new type of universal building blocks that can provide structural color within a subwavelength footprint. The presented results pave the way toward the design and usage of highly tunable resonances that exploit the radiative coupling of high-index nanostructures.

     
    more » « less
  2. Abstract

    Quantum devices based on InSb nanowires (NWs) are a prime candidate system for realizing and exploring topologically-protected quantum states and for electrically-controlled spin-based qubits. The influence of disorder on achieving reliable quantum transport regimes has been studied theoretically, highlighting the importance of optimizing both growth and nanofabrication. In this work, we consider both aspects. We developed InSb NW with thin diameters, as well as a novel gating approach, involving few-layer graphene and atomic layer deposition-grown AlOx. Low-temperature electronic transport measurements of these devices reveal conductance plateaus and Fabry–Pérot interference, evidencing phase-coherent transport in the regime of few quantum modes. The approaches developed in this work could help mitigate the role of material and fabrication-induced disorder in semiconductor-based quantum devices.

     
    more » « less
  3. Abstract

    Vertical III-V nanowire (NW) arrays are promising candidates for infrared (IR) photodetection applications. Generally, NWs with large diameters are required for efficient absorption in the IR range. However, increasing the NW diameter results in a loss of spectral selectivity and an enhancement in the photodetector dark current. Here, we propose a nanophotonic engineering approach to achieving spectrally-selective light absorption while minimizing the volume of the absorbing medium. Based on simulations performed using rigorous coupled-wave analysis (RCWA) techniques, we demonstrate dramatic tunability of the short-wavelength infrared (SWIR) light absorption properties of InAs NWs with base segments embedded in a reflective backside Au layer and with partial GaAs0.1Sb0.9shell segment coverage. Use of a backside reflector results in the generation of a delocalized evanescent field around the NW core segment that can be selectively captured by the partially encapsulating GaAs0.1Sb0.9shell layer. By adjusting the core and shell dimensions, unity absorption can be selectively achieved in the 2 to 3μm wavelength range. Due to the transparency of the GaAs0.1Sb0.9shell segments, wavelength-selective absorption occurs only along the InAs core segments where they are partially encapsulated. The design presented in this work paves the path toward spectrally-selective and polarization-dependent NW array-based photodetectors, in which carrier collection efficiencies can be enhanced by positioning active junctions at the predefined locations of the partial shell segments.

     
    more » « less
  4. Bimetallic plasmonic nanostructures provide composition and spatial distribution of the individual components in the nanostructure in addition to overall size and morphology as degrees of freedom for tuning near- and far-field optical responses. AgAuAg nanorods (NRs) generated through epitaxial deposition of Ag on the tips of Au bipyramids (BPs) are an important bimetallic model system whose longitudinal dipolar plasmon mode first shows a spectral blue-shift upon initial deposition of Ag on the Au BP tips followed by a red-shift after additional deposition of Ag. Here, we quantify the relative contributions from morphological and compositional effects to the far-field spectral shift of the longitudinal and vertical dipolar plasmon modes during the initial deposition of Ag and compare the near-field in Ag and AgAuAg NRs with lengths between L = 130 nm–280 nm under whitelight illumination through electromagnetic simulations. Subsequently, we experimentally characterize the near-field around AgAuAg NRs with lengths between L = 88.1–749.0 nm at a constant excitation wavelength of 1064 nm on a silicon (Si) support through scattering type near-field scanning microscopy (sNSOM). We detect Fabry–Perot resonance-like higher order multipolar plasmon resonances whose order and near-field pattern depends on the length and composition of the NRs as well as the refractive index of the ambient medium. We find that under oblique illumination higher order multipolar modes with an even symmetry dominate on the high refractive index Si substrate due to strong electromagnetic interactions between the NR and the substrate. 
    more » « less
  5. Abstract

    Zinc oxide (ZnO) nanowires are widely studied for use in ultraviolet optoelectronic devices, such as nanolasers and sensors. Nanowires (NWs) with an MgO shell exhibit enhanced band‐edge photoluminescence (PL), a result previously attributed to passivation of ZnO defects. However, we find that processing the ZnO NWs under low oxygen partial pressure leads to an MgO‐thickness‐dependent PL enhancement owing to the formation of optical cavity modes. Conversely, processing under higher oxygen partial pressure leads to NWs that support neither mode formation nor band‐edge PL enhancement. High‐resolution electron microscopy and density‐functional calculations implicate the ZnOm‐plane surface morphology as the key determinant of core‐shell structure and cavity‐mode optics. A ZnO surface with atomic steps along them‐plane in thec‐axis direction stimulates the growth of a smooth MgO shell that supports guided‐wave optical modes and enhanced UV PL. On the other hand, a smoother ZnO surface leads to nucleation of a rough cladding layer which supports neither enhanced UV PL nor optical cavity modes. Finite‐element analysis shows a clear correlation between allowed Fabry‐Perot and whispering gallery modes and enhanced UV‐PL. These results point the way to fabricating ZnO/MgO core‐shell nanowires for more efficient UV nanolasers, scintillators, and sensors.

     
    more » « less