Abstract This work investigates the polarization state of light diffracted from uncoated and gold‐coated InP nanowire photonic crystal arrays grown by selective area epitaxy. Experimental data and finite‐difference time‐domain simulations show that both the intensity and the ellipticity of the polarization state of the diffracted light beam can be controlled by the nanowire dimensions and gold coating, while the diffracted angle remains unchanged with respect to variations of these parameters. A nominally 10 nm‐thick gold film deposited around the nanowires enhances the diffraction intensity by plasmonic effects. These results demonstrate that the controlled conversion of incident linearly polarized light to circularly polarized or rotated linearly polarized diffracted light can find applications in photonic integrated circuits. The high sensitivity of the polarization state with respect to alterations of the nanowire dimension opens new prospects in the areas of semiconductor metrology and microchip inspection as well as for submicron particle detection.
more »
« less
Unique reflection from birefringent uncoated and gold-coated InP nanowire crystal arrays
We demonstrate unique reflective properties of light from bare and gold-coated InP nanowire (NW) photonic crystal arrays. The undoped wurtzite InP nanowire arrays are grown by selective area epitaxy and coated with a 12-nm thick Al2O3film to suppress atmospheric oxidation. A nominally 10-nm thick gold film is deposited around the NWs to investigate plasmonic effects. The reflectance spectra show pronounced Fabry-Perot oscillations, which are shifted for p- and s-polarized light due to a strong intrinsic birefringence in the NW arrays. Gold-coating of the NW array leads to a significant increase of the reflectance by a factor of two to three compared to the uncoated array, which is partially attributed to a plasmon resonance of the gold caps on top of the NWs and to a plasmonic antenna effect for p-polarized light. These interpretations are supported by finite-difference-time-domain simulations. Our experiments and simulations indicate that NW arrays can be used to design micrometer-sized polarizers, analyzers, and mirrors which are important optical elements in optoelectronic integrated circuits.
more »
« less
- Award ID(s):
- 2004768
- PAR ID:
- 10531098
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 3
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 3172
- Size(s):
- Article No. 3172
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 2D photonic crystal (PhC) lasing from an InP nanowire array still attached to the InP substrate is demonstrated for the first time. The undoped wurtzite InP nanowire array is grown by selective area epitaxy and coated with a 10 nm thick Al2O3film to suppress atmospheric oxidation and band‐bending effects. The PhC array displays optically pumped lasing at room temperature at a pulsed threshold fluence of 14 µJ cm−2. At liquid nitrogen temperature, the array shows lasing under continuous wave excitation at a threshold intensity of 500 W cm−2. The output power of the single mode laser line reaches values of 470 µW. Rate equation calculations indicate a quality factor ofQ ≈ 1000. Investigations near threshold reveal that lasing starts from isolated islands within the pumped region before coherently merging into a single homogeneous area with increasing excitation power. This field emits a lasing mode with an average off‐normal angle of ≈6°. Single mode lasing with the nanoarray still attached to the InP substrate opens new design opportunities for electrically pumped PhC laser light sources.more » « less
-
Abstract In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2μm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation.more » « less
-
ABSTRACT Rigorous coupled wave analysis (RCWA) simulation was used to model the absorption in periodic arrays of GaAs(0.73)P(0.27) nanowires (NWs) on Si substrates dependent upon the diameter (D), length (L), and spacing (center-to-center distance, or pitch, P) of the NWs. Based on this study, two resonant arrangements for a top NW array sub-cell having the highest limiting short-circuit current densities (J_sc) were found to be close to D = 150 nm, P = 250 nm and D = 300 nm, P = 500 nm, both featuring the same packing density of 0.28. Even though a configuration with thinner NWs exhibited the highest J_sc = 19.46 mA/cm^2, the array with D = 350 nm and P = 500 nm provided current matching with the underlying Si sub-cell with J_sc = 18.59 mA/cm^2. Addition of a rear-side In(0.81)Ga(0.19)As nanowire array with D = 800 nm and P = 1000 nm was found to be suitable for current matching with the front NW sub-cell and middle Si. However, with thinner and sparser In(0.81)Ga(0.19)As NWs with D = 700 nm and P = 1000 nm, the J_scof the bottom sub-cell was increased from 17.35 mA/cm^2 to 18.76 mA/cm^2 using a planar metallic back surface reflector, thus achieving a current matching with the top and middle cells.more » « less
-
Confining and controlling light in extreme subwavelength scales are tantalizing tasks. In this work, we report a study of individual plasmonic film-coupled nanostar resonators where polarized plasmonic optical modes are trapped in ultrasmall volumes. Individual gold nanostars, separated from a flat gold film by a thin dielectric spacer layer, exhibit a strong light confinement between the sub-10 nm volume of the nanostar's tips and the film. Through dark field scattering measurements of many individual nanostars, a statistical observation of the scattered spectra is obtained and compared with extensive simulation data to reveal the origins of the resonant peaks. We observe that an individual nanostar on a flat gold film can result in a resonant spectrum with single, double or multiple peaks. Further, these resonant peaks are strongly polarized under white light illumination. Our simulation data revealed that the resonant spectrum of an individual film-coupled nanostar resonator is related to the symmetry of the nanostar, as well as the orientation of the nanostar relative to its placement on the gold substrate. Our results demonstrate a simple new method to create an ultrasmall mode volume and polarization sensitive plasmonic platform which could be useful for applications in sensing or enhanced light–matter interactions.more » « less
An official website of the United States government
