This work provides a decentralized approach to safety by combining tools from control barrier functions (CBF) and nonlinear model predictive control (NMPC). It is shown how leveraging backup safety controllers allows for the robust implementation of CBF over the NMPC computation horizon, ensuring safety in nonlinear systems with actuation constraints. A leader-follower approach to control barrier functions (LFCBF) enforcement will be introduced as a strategy to enable a robot leader, in a multi-robot interactions, to complete its task in minimum time, hence aggressively maneuvering. An algorithmic implementation of the proposed solution is provided and safety is verified via simulation.
more »
« less
Control Barrier Functions for Complete and Incomplete Information Stochastic Systems
Real-time controllers must satisfy strict safety requirements. Recently, Control Barrier Functions (CBFs) have been proposed that guarantee safety by ensuring that a suitablydefined barrier function remains bounded for all time. The CBF method, however, has only been developed for deterministic systems and systems with worst-case disturbances and uncertainties. In this paper, we develop a CBF framework for safety of stochastic systems. We consider complete information systems, in which the controller has access to the exact system state, as well as incomplete information systems where the state must be reconstructed from noisy measurements. In the complete information case, we formulate a notion of barrier functions that leads to sufficient conditions for safety with probability 1. In the incomplete information case, we formulate barrier functions that take an estimate from an extended Kalman filter as input, and derive bounds on the probability of safety as a function of the asymptotic error in the filter. We show that, in both cases, the sufficient conditions for safety can be mapped to linear constraints on the control input at each time, enabling the development of tractable optimization-based controllers that guarantee safety, performance, and stability. Our approach is evaluated via simulation study on an adaptive cruise control case study.
more »
« less
- Award ID(s):
- 1656981
- PAR ID:
- 10131729
- Date Published:
- Journal Name:
- American Control Conference (ACC)
- Page Range / eLocation ID:
- 2928-2935
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Control Barrier Functions (CBFs) are an effective methodology to ensure safety and performative efficacy in real-time control applications such as power systems, resource allocation, autonomous vehicles, robotics, etc. This approach ensures safety independently of the high-level tasks that may have been pre-planned off-line. For example, CBFs can be used to guarantee that a vehicle will remain in its lane. However, when the number of agents is large, computation of CBFs can suffer from the curse of dimensionality in the multi-agent setting. In this work, we present Mean-field Control Barrier Functions (MF-CBFs), which extends the CBF framework to the mean-field (or swarm control) setting. The core idea is to model a population of agents as probability measures in the state space and build corresponding control barrier functions. Similar to traditional CBFs, we derive safety constraints on the (distributed) controls but now relying on the differential calculus in the space of probability measures.more » « less
-
With the increasing need for safe control in the domain of autonomous driving, model-based safety-critical control approaches are widely used, especially Control Barrier Function (CBF) based approaches. Among them, Exponential CBF (eCBF) is particularly popular due to its realistic applicability to high-relative-degree systems. However, for most of the optimization-based controllers utilizing CBF-based constraints, solution feasibility is a common issue raised from potential conflict among different constraints. Moreover, how to incorporate uncertainty into the eCBF-based constraints in high-relative-degree systems to account for safety remains an open challenge. In this paper, we present a novel approach to extend a eCBF-based safe critical controller to a probabilistic setting to handle potential motion uncertainty from system dynamics. More importantly, we leverage an optimization-based technique to provide a solution feasibility guarantee in run time, while ensuring probabilistic safety. Lane changing and intersection handling are demonstrated as two use cases, and experiment results are provided to show the effectiveness of the proposed approach.more » « less
-
In this study, we address the problem of safe control in systems subject to state and input constraints by integrating the Control Barrier Function (CBF) into the Model Predictive Control (MPC) formulation. While CBF offers a conservative policy and traditional MPC lacks the safety guarantee beyond the finite horizon, the proposed scheme takes advantage of both MPC and CBF approaches to provide a guaranteed safe control policy with reduced conservatism and a shortened horizon. The proposed methodology leverages the sum-of-square (SOS) technique to construct CBFs that make forward invariant safe sets in the state space that are then used as a terminal constraint on the last predicted state. CBF invariant sets cover the state space around system fixed points. These islands of forward invariant CBF sets will be connected to each other using MPC. To do this, we proposed a technique to handle the MPC optimization problem subject to the combination of intersections and union of constraints. Our approach, termed Model Predictive Control Barrier Functions (MPCBF), is validated using numerical examples to demonstrate its efficacy, showing improved performance compared to classical MPC and CBF.more » « less
-
When the disturbance input matrix is nonlinear, existing disturbance observer design methods rely on the solvability of a partial differential equation or the existence of an output function with a uniformly well-defined disturbance relative degree, which can pose significant limitations. This note introduces a systematic approach for designing an Immersion and Invariance-based Disturbance Observer (IIDOB) that circumvents these strong assumptions. The proposed IIDOB ensures the disturbance estimation error is globally uniformly ultimately bounded by approximately solving a partial differential equation while compensating for the approximation error. Furthermore, by integrating IIDOB into the framework of control barrier functions, a filter-based safe control design method for control affine systems with disturbances is established where the filter is used to generate an alternative disturbance estimation signal with a known derivative. Sufficient conditions are established to guarantee the safety of the disturbed systems. Simulation results demonstrate the effectiveness of the proposed method.more » « less
An official website of the United States government

