skip to main content

Title: A Reframing of Trait–Demographic Rate Analyses for Ecology and Evolutionary Biology
The relationship between plant functional traits and demographic performance forms the foundation of trait-based ecology. It also serves as the natural linkage between trait-based ecology and much of evolutionary biology. Despite these important aspects, plant trait–demographic performance relationships reported in the literature are typically weak or nonexistent, and a synthetic picture of how traits are related to ecological and evolutionary patterns remains underdeveloped. Here, we begin by presenting an overview of the shortcomings in functional trait–demographic performance research and why weak results are more common than trait-based ecologists like to admit. We then discuss why there should be a natural synthesis between trait-based ecology and evolutionary ecology and potential reasons for why this synthesis has yet to emerge. Finally, we present a series of conceptual and empirical foci that should be incorporated into future trait–demographic performance research that will hopefully solidify the foundation of trait-based ecology and catalyze a synthesis with evolutionary ecology. These include (1) focusing on individuals as the fundamental unit of study instead of relying on population or species mean values for traits and demographic rates; (2) placing more emphasis on phenotypic integration, alternative designs, and performance landscapes; (3) coming to terms with the importance of regional- more » and local-scale context on plant performance; (4) an appreciation of the varied drivers of life-stage transitions and what aspects of function should be linked to those transitions; and (5) determining how the drivers of plant mortality act independently and in concert and what aspects of plant function best predict these outcomes. Our goal is to help highlight the shortcomings of trait–demographic performance research as it stands and areas where this research could course correct, ultimately, with the hope of promoting a trait-based research program that speaks to both ecologists and evolutionary biologists. « less
Award ID(s):
Publication Date:
Journal Name:
International journal of plant sciences
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. All organisms experience fundamental conflicts between divergent metabolic processes. In plants, a pivotal conflict occurs between allocation to growth, which accelerates resource acquisition, and to defense, which protects existing tissue against herbivory. Trade-offs between growth and defense traits are not universally observed, and a central prediction of plant evolutionary ecology is that context-dependence of these trade-offs contributes to the maintenance of intraspecific variation in defense [Züst and Agrawal,Annu. Rev. Plant Biol., 68, 513–534 (2017)]. This prediction has rarely been tested, however, and the evolutionary consequences of growth–defense trade-offs in different environments are poorly understood, especially in long-lived species [Cipolliniet al.,Annual Plant Reviews(Wiley, 2014), pp. 263–307]. Here we show that intraspecific trait trade-offs, even when fixed across divergent environments, interact with competition to drive natural selection of tree genotypes corresponding to their growth–defense phenotypes. Our results show that a functional trait trade-off, when coupled with environmental variation, causes real-time divergence in the genetic architecture of tree populations in an experimental setting. Specifically, competitive selection for faster growth resulted in dominance by fast-growing tree genotypes that were poorly defended against natural enemies. This outcome is a signature example of eco-evolutionary dynamics: Competitive interactions affected microevolutionary trajectories on a timescale relevant to subsequentmore »ecological interactions [Brunneret al.,Funct. Ecol.33, 7–12 (2019)]. Eco-evolutionary drivers of tree growth and defense are thus critical to stand-level trait variation, which structures communities and ecosystems over expansive spatiotemporal scales.

    « less
  2. null (Ed.)
    Abstract Background and Aims The composition and dynamics of plant communities arise from individual-level demographic outcomes, which are driven by interactions between phenotypes and the environment. Functional traits that can be measured across plants are frequently used to model plant growth and survival. Perhaps surprisingly, species average trait values are often used in these studies and, in some cases, these trait values come from other regions or averages calculated from global databases. This data aggregation potentially results in a large loss of valuable information that probably results in models of plant performance that are weak or even misleading. Methods We present individual-level trait and fine-scale growth data from >500 co-occurring individual trees from 20 species in a Chinese tropical rain forest. We construct Bayesian models of growth informed by theory and construct hierarchical Bayesian models that utilize both individual- and species-level trait data, and compare these models with models only using individual-level data. Key Results We show that trait–growth relationships measured at the individual level vary across species, are often weak using commonly measured traits and do not align with the results of analyses conducted at the species level. However, when we construct individual-level models of growth using leaf areamore »ratio approximations and integrated phenotypes, we generated strong predictive models of tree growth. Conclusions Here, we have shown that individual-level models of tree growth that are built using integrative traits always outperform individual-level models of tree growth that use commonly measured traits. Furthermore, individual-level models, generally, do not support the findings of trait–growth relationships quantified at the species level. This indicates that aggregating trait and growth data to the species level results in poorer and probably misleading models of how traits are related to tree performance.« less
  3. Reddy, Gadi V (Ed.)
    Abstract The association between insect herbivores and vascular plants represents one of the greatest success stories in terrestrial evolution. Specific mechanisms generating diversity in the association remain poorly understood, but it has become increasingly clear that microbes play important roles in mediating plant–insect interactions. Previous research on phytoplasmas (Acholeplasmatales: Acholeplasmataceae), a diverse group of plant-pathogenic bacteria, and their hemipteran insect vectors suggests that this system provides a new model for understanding how interactions among distantly related but ecologically associated groups of organisms can drive evolutionary diversification. Phytoplasma infections affect the phenotypes of both plants and vectors, altering functional traits (e.g., diet breadth) and mediating host shifts which may, in turn, alter genetic and phylogenetic patterns. This review highlights previous research on the functional ecology and phylogenetic components of phytoplasma-plant-vector (PPV) associations relevant to the evolutionary diversification of this system. Although phytoplasmas and their hosts occur in most terrestrial biomes and have evolved together over the past 300+ million years, major gaps in knowledge of PPV associations remain because most prior research on the system focused on strategies for mitigating effects of phytoplasma diseases in agroecosystems. Study of this system within a broader evolutionary context could help elucidate mechanisms by whichmore »interactions between insect herbivores, microbes, and plants drive biological diversification and also help predict the emergence of diseases affecting agriculture. Future research should more thoroughly document PPV associations in natural habitats, examine the relative prevalence of cospeciation versus host shifts in this system, and test possible macroevolutionary consequences of host manipulation by phytoplasmas.« less
  4. Abstract

    Phenotypic diversity is influenced by physical laws that govern how an organism's morphology relates to functional performance. To study comparative organismal biology, we need to quantify this diversity using biological traits (definable aspects of the morphology, behavior, and/or life history of an organism). Traits are often assumed to be immutable properties that need to be measured only a single time in each adult. However, organisms often experience changes in their biotic and abiotic environments that can alter trait function. In particular, structural traits represent the physical capabilities of an organism and may be heavily influenced by the rate at which they are exposed to physical demands (“loads”). For instance, materials tend to become more brittle when loaded at faster rates which could negatively affect structures trying to resist those loads (e.g., brittle materials are more likely to fracture). In the following perspective piece, we address the dynamic properties of structural traits and present case studies that demonstrate how dynamic strain rates affect the function of these traits in diverse groups of organisms. First, we review how strain rate affects deformation and fracture in biomaterials and demonstrate how these effects alter puncture mechanics in systems such as snake strikes. Second,more »we discuss how different rates of bone loading affect the locomotor biomechanics of vertebrates and their ecology. Through these examinations of diverse taxa and ecological functions, we aim to highlight how rate-dependent properties of structural traits can generate dynamic form–function relationships in response to changing environmental conditions. Findings from these studies serve as a foundation to develop more nuanced ecomechanical models that can predict how complex traits emerge and, thereby, advance progress on outlining the Rules of Life.

    « less
  5. 1. Spatial partitioning is a classic hypothesis to explain plant species coexistence, but evidence linking local environmental variation to spatial sorting, demography and species' traits is sparse. If co-occurring species' performance is optimized differently along environmental gradients because of trait variation, then spatial variation might facilitate coexistence. 2. We used a system of four naturally co-occurring species of Clarkia (Onagraceae) to ask whether distribution patchiness corresponds to variation in two environmental variables that contribute to hydrological variation. We then reciprocally sowed Clarkia into each patch type and measured demographic rates in the absence of congeneric competition. Species sorted in patches along one or both gradients, and in three of the four species, germination rate in the ‘home’ patch was higher than all other patches. 3. Spatially variable germination resulted in the same three species exhibiting the highest population growth rates in their home patches. 4. Species' trait values related to plant water use, as well as indicators of water stress in home patches, differed among species and corresponded to home patch attributes. However, post-germination survival did not vary among species or between patch types, and fecundity did not vary spatially. 5. Synthesis. Our research demonstrates the likelihood that within-community spatialmore »heterogeneity affects plant species coexistence, and presents novel evidence that differential performance in space is explained by what happens in the germination stage. Despite the seemingly obvious link between adult plant water-use and variation in the environment, our results distinguish the germination stage as important for spatially variable population performance.« less