skip to main content


Title: A Reframing of Trait–Demographic Rate Analyses for Ecology and Evolutionary Biology
The relationship between plant functional traits and demographic performance forms the foundation of trait-based ecology. It also serves as the natural linkage between trait-based ecology and much of evolutionary biology. Despite these important aspects, plant trait–demographic performance relationships reported in the literature are typically weak or nonexistent, and a synthetic picture of how traits are related to ecological and evolutionary patterns remains underdeveloped. Here, we begin by presenting an overview of the shortcomings in functional trait–demographic performance research and why weak results are more common than trait-based ecologists like to admit. We then discuss why there should be a natural synthesis between trait-based ecology and evolutionary ecology and potential reasons for why this synthesis has yet to emerge. Finally, we present a series of conceptual and empirical foci that should be incorporated into future trait–demographic performance research that will hopefully solidify the foundation of trait-based ecology and catalyze a synthesis with evolutionary ecology. These include (1) focusing on individuals as the fundamental unit of study instead of relying on population or species mean values for traits and demographic rates; (2) placing more emphasis on phenotypic integration, alternative designs, and performance landscapes; (3) coming to terms with the importance of regional- and local-scale context on plant performance; (4) an appreciation of the varied drivers of life-stage transitions and what aspects of function should be linked to those transitions; and (5) determining how the drivers of plant mortality act independently and in concert and what aspects of plant function best predict these outcomes. Our goal is to help highlight the shortcomings of trait–demographic performance research as it stands and areas where this research could course correct, ultimately, with the hope of promoting a trait-based research program that speaks to both ecologists and evolutionary biologists.  more » « less
Award ID(s):
1638488
NSF-PAR ID:
10131838
Author(s) / Creator(s):
Date Published:
Journal Name:
International journal of plant sciences
Volume:
181
Issue:
1
ISSN:
1058-5893
Page Range / eLocation ID:
33-43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecologists have worked to ascribe function to the variation found in plant populations, communities and ecosystems across environments for at least the past century. The vast body of research in functional ecology has drastically improved understanding of how individuals respond to their environment, communities are assembled and ecosystems function. However, with limited exceptions, few studies have quantified differences in plant function during theearlieststages of the plant life cycle, and fewer have tested how this early variability shapes populations, communities and ecosystems.

    Drawing from the literature and our collective experience, we describe the current state of knowledge in seedling functional ecology and provide examples of how this subdiscipline can enrich our fundamental understanding of plant function across levels of organisation. To inspire progressive work in this area, we also outline key considerations involved in seedling functional research (who, what, when, where and how to measure seedling traits) and identify remaining challenges and gaps in understanding around methodological approaches.

    Within this conceptual synthesis, we highlight three critical areas in seedling ecology for future research to target. First, given wide variation in the definition of a ‘seedling’, we provide a standard definition based on seed reserve dependence while emphasising the need to measure ontogenetic variation more clearly both within and following the seedling stage. Second, studies demonstrate that seedlings can be studied in multiple media (e.g. soil, agar, filter paper) and conditions (e.g. field, greenhouse, laboratory). We recommend that researchers select methods based on explicit goals, yet follow standard guidelines to reduce methodological noise across studies. Third, research is critically needed to assess the implications of different methodologies on trait measurement and compatibility across studies.

    By highlighting the importance of seedling functional ecology and suggesting pathways to address key challenges, we aim to inspire future research that generates useful and comparable data on seedling functional ecology. This work is critical to explain variation within and among populations, communities and ecosystems and integrate this most vulnerable stage of plant life into ecological frameworks.

     
    more » « less
  2. Abstract

    While trait‐based approaches have been effectively leveraged by plant ecologists to advance our understanding of community responses to major global challenges, such as climate change and invasive species, the study of marine macroalgae is still mired in a functional group (FG) framework developed in the 1980s.

    In this paper, we used predominantly categorical data for 18 macroalgal traits that were accessible in public databases and/or the literature to explore their usefulness in a trait‐based framework for marine macroalgae. Species were clustered into emergent, data‐driven groups using a Gower dissimilarity matrix, then a k‐medoid clustering approach called partitioning around the medoids.

    We identified 14 emergent groups (EGs) that captured a spectrum of strategies used by different macroalgal species. However, significant ‘gaps’ in trait space may identify evolutionary constraints to algal adaptive strategies. Multivariate analysis showed how the 18 traits created trait space and drove the clustering. A spectrum of strategies and the influence of multiple traits imply that algal strategies are likely governed by complex multivariate, not bivariate, trade‐offs. Finally, we found that our EGs appeared to reflect multivariate trade‐offs and diverse ecological strategies more than the traditional FG model for macroalgae. We tested the usefulness of our EGs by comparing real‐world spatial distributions of species across habitats with known strong environmental filters to their area occupied in trait space. We found significant separation in trait space and divergent occupancy patterns across global distributions, attachment substrates and elevational zones. These results support the use of categorical data accessible in the literature as a useful step towards developing trait‐based ecology for marine macroalgae.

    Synthesis. Our findings indicate that readily accessible categorical traits produce emergent FGs that reflect environmental filtering and therefore demonstrate the power of trait‐based approaches over the current FG framework. Furthermore, we posit that categorical traits are a valuable and potentially complementary addition to a newly developing database of continuous traits because they encompass a broader, more globally accessible set of traits.

     
    more » « less
  3. A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes. 
    more » « less
  4. Abstract

    A central goal at the interface of ecology and conservation is understanding how the relationship between biodiversity and ecosystem function (B–EF) will shift with changing climate. Despite recent theoretical advances, studies which examine temporal variation in the functional traits and mechanisms (mass ratio effects and niche complementarity effects) that underpin the B–EF relationship are lacking.

    Here, we use 13 years of data on plant species composition, plant traits, local‐scale abiotic variables, above‐ground net primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to investigate temporal dynamics in the B–EF relationship. To assess how changing climatic conditions may alter the B–EF relationship, we built structural equation models (SEMs) for 11 traits across 13 years and evaluated the power of different trait SEMs to predict ANPP, as well as the relative contributions of mass ratio effects (community‐weighted mean trait values; CWM), niche complementarity effects (functional dispersion; FDis) and local abiotic variables. Additionally, we coupled linear mixed effects models with Multimodel inference methods to assess how inclusion of trait–climate interactions might improve our ability to predict ANPP through time.

    In every year, at least one SEM exhibited good fit, explaining between 19.6% and 57.2% of the variation in ANPP. However, the identity of the trait which best explained ANPP changed depending on winter precipitation, with leaf area, plant height and foliar nitrogen isotope content (δ15N) SEMs performing best in high, middle and low precipitation years, respectively. Regardless of trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic effects were always greater than total abiotic effects. Multimodel inference reinforced the results of SEM analysis, with the inclusion of climate–trait interactions marginally improving our ability to predict ANPP through time.

    Synthesis. Our results suggest that temporal variation in climatic conditions influences which traits, mechanisms and abiotic variables were most responsible for driving the B–EF relationship. Importantly, our findings suggest that future research should consider temporal variability in the B–EF relationship, particularly how the predictive power of individual functional traits and abiotic variables may fluctuate as conditions shift due to climate change.

     
    more » « less
  5. Abstract

    Trait‐based ecology (TBE) has proven useful in the terrestrial realm and beyond for collapsing ecological complexity into traits that can be compared and generalized across species and scales. However, TBE for marine macroalgae is still in its infancy, motivating research to build the foundation of macroalgal TBE by leveraging lessons learned from other systems.

    Our objectives were to evaluate the utility of mean trait values (MTVs) across species, to explore the potential for intraspecific trait variability, and to identify macroalgal ecological strategies by clustering species with similar traits and testing for bivariate relationships between traits. To accomplish this, we measured thallus toughness, a trait associated with resistance to herbivory, and tensile strength, a trait associated with resistance to physical disturbance, in eight tropical macroalgal species across up to seven sites where they were found around Moorea, French Polynesia.

    We found interspecific trait variation generally exceeded intraspecific variation across species. Furthermore, MTV within species varied across sites, suggesting future research should focus on whether these traits are influenced by site‐specific differences in biotic and abiotic drivers. Species grouped into three clusters representing different ecological strategies: species that were defended against herbivores but not strong, species that were strong but not defended and species that were neither. Intraspecific standardized major axis regressions revealed five species exhibited significant or marginally significant positive relationships between these two traits, suggesting trait syndromes within species. Only one species exhibited a significant intraspecific trade‐off, as indicated by a negative regression slope.

    Synthesis. Our results point to three key takeaways that should provide a foundation to rapidly advance development of TBE for macroalgae in the future. First, our evidence supports the use of MTVs for macroalgae. Second, we identified significant spatial variability in macroalgal traits that may indicate an ability to respond to shifting environmental drivers. Third, measuring even a few traits can be a powerful tool to identify different ecological strategies to resist disturbances such as herbivory and removal by wave action. We hope these novel findings motivate future research into a wider suite of macroalgal traits, functions and strategies to further develop trait‐based approaches for marine macroalgae.

     
    more » « less