The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive. Here, we provide evidence of a selective link between individual recognition and cooperation in the paper wasp Polistes fuscatus through a combination of clinal, common garden, and population genomics analyses. We identified latitudinal clines in both rates of cooperative nesting and color pattern diversity, consistent with a selective link between recognition and cooperation. In behavioral experiments, we replicated previous results demonstrating individual recognition in cooperative and phenotypically diverse P. fuscatus from New York. In contrast, wasps from a less cooperative and phenotypically uniform Louisiana population showed no evidence of individual recognition. In a common garden experiment, groups of wasps from northern populations formed more stable and individually biased associations, indicating that recognition facilitates group stability. The strength of recent positive selection on cognition-associated loci likely to mediate individual recognition is substantially greater in northern compared with southern P. fuscatus populations. Collectively, these data suggest that individual recognition and cooperative nesting behavior have co-evolved in P. fuscatus because recognition helps stabilize social groups. This work provides evidence of a specific cognitive phenotype under selection because of social interactions, supporting the idea that social behavior can be a key driver of cognitive evolution.
more »
« less
Evolutionary dynamics of recent selection on cognitive abilities
Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper waspPolistes fuscatus—a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps inP. fuscatuscontain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures inP. fuscatus’ recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.
more »
« less
- PAR ID:
- 10131921
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 6
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 3045-3052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Visual recognition of three-dimensional signals, such as faces, is challenging because the signals appear different from different viewpoints. A flexible but cognitively challenging solution is viewpoint-independent recognition, where receivers identify signals from novel viewing angles. Here, we used same/different concept learning to test viewpoint-independent face recognition in Polistes fuscatus, a wasp that uses facial patterns to individually identify conspecifics. We found that wasps use extrapolation to identify novel views of conspecific faces. For example, wasps identify a pair of pictures of the same wasp as the ‘same’, even if the pictures are taken from different views (e.g. one face 0 deg rotation, one face 60 deg rotation). This result is notable because it provides the first evidence of view-invariant recognition via extrapolation in an invertebrate. The results suggest that viewpoint-independent recognition via extrapolation may be a widespread strategy to facilitate individual face recognition.more » « less
-
Abstract Vigilant animals detect and respond to threats in the environment, often changing posture and movement patterns. Vigilance is modulated not only by predators but also by conspecific threats. In social animals, precisely how conspecific threats alter vigilance behavior over time is relevant to long‐standing hypotheses about social plasticity. We report persistent effects of a simulated conspecific challenge on behavior of wild northern paper wasp foundresses,Polistes fuscatus. During the founding phase of the colony cycle, conspecific wasps can usurp nests from the resident foundress, representing a severe threat. We used automated tracking to monitor the movement and posture ofP. fuscatusfoundresses in response to simulated intrusions. Wasps displayed increased movement, greater bilateral wing extension, and reduced antennal separation after the threat was removed. These changes were not observed after presentation with a wooden dowel. By rapidly adjusting individual behavior after fending off an intruder, paper wasp foundresses might invest in surveillance of potential threats, even when such threats are no longer immediately present. The prolonged vigilance‐like behavioral state observed here is relevant to plasticity of social recognition processes in paper wasps.more » « less
-
Social interactions are mediated by recognition systems, meaning that the cognitive abilities or phenotypic diversity that facilitate recognition may be common targets of social selection. Recognition occurs when a receiver compares the phenotypes produced by a sender with a template. Coevolution between sender and receiver traits has been empirically reported in multiple species and sensory modalities, though the dynamics and relative exaggeration of traits from senders versus receivers have received little attention. Here, we present a coevolutionary dynamic model that examines the conditions under which senders and receivers should invest effort in facilitating individual recognition. The model predicts coevolution of sender and receiver traits, with the equilibrium investment dependent on the relative costs of signal production versus cognition. In order for recognition to evolve, initial sender and receiver trait values must be above a threshold, suggesting that recognition requires some degree of pre-existing diversity and cognitive abilities. The analysis of selection gradients demonstrates that the strength of selection on sender signals and receiver cognition is strongest when the trait values are furthest from the optima. The model provides new insights into the expected strength and dynamics of selection during the origin and elaboration of individual recognition, an important feature of social cognition in many taxa. This article is part of the theme issue ‘Signal detection theory in recognition systems: from evolving models to experimental tests’.more » « less
-
The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.more » « less
An official website of the United States government
