skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Student Learning in International Research Programs: A Comparison Across Cultural Contexts
Engineering work is becoming increasingly global in nature, making it essential that engineering students develop global competence [1], [2]. However, traditional global programs (e.g., study abroad) present challenges for engineering students who often have to fit such experiences within a highly structured curricular schedule. Further, study abroad can be a financial burden for many students who are already paying significant amounts to attend college [3], [4]. One type of global engineering program that has the potential to address these challenges are international research experiences, which typically take place during the summer and provide students with a salary. Research has suggested that such experiences can meaningfully influence students’ global competence [5], but few studies have explored how components of the experience may influence learning. This study compares two NSF-sponsored international research experiences for students (IRES) programs that send students to two different countries to identify differences in learning outcomes between the program participants. This work represents a collaborative effort among faculty members and graduate students from three engineering departments with the goal of creating research opportunities for students at various international sites using research-based educational practices. By understanding how context influences students’ learning opportunities, faculty developing such programs may select research locations more intentionally or offer supplemental programming for students to ensure they achieve all of the program’s intended learning outcomes.  more » « less
Award ID(s):
1658620
NSF-PAR ID:
10132010
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An increasingly global environment expects graduating Engineering students to perform, live and work across cultures. Most intercultural competence research and associated global engineering education is focused on developing the global engineering skill set through long-term travel experiences such as study abroad programs. These programs can be expensive from both a time and money standpoint, limiting the participation to more privileged members of a community, and are not scalable to support broader participation. This work-in-progress addresses this research gap by focusing on the development of the students’ global learner mindset without requiring extensive travel. The project will investigate four different global engagement interventions, including the use of engineering case studies, the intentional formation of multi-national student teams, a Collaborative Online International Learning (COIL) research project, and a community engaged project within a short course. These interventions can be used to develop a holistic global learner mindset and global engineering education approach to foster global competence in undergraduate engineering students. The four global engagement interventions will be grounded in the global engineering competency (GEC) theoretical framework and assessed for their ability to foster a global learner mindset in engineering students. A mixed-methods approach will be used to assess students’ global learner mindset and skill set. This research will use the Global Engagement Survey (GES), the Global Engineering Competency Scale (GECS) and specific questions developed by the researchers to evaluate improvements in the participating students’ global engineering skill set and answer specific research questions including: 1) To what extent can global competence be developed in engineering students through the use of the proposed global engagement interventions; and 2) what are the relative strengths of each of the proposed global engagement interventions in developing global engineering competence? Combined, these research measures will provide both an accurate picture of how each global engagement intervention impacts the formation of a global learner mindset in engineering education, and also its associated ability to develop and/or improve global engineering skills. The outcomes of this study will generate valuable knowledge to understand how each global engagement intervention impacts the formation of global engineering competence. In this work-in-progress study, the authors discuss the four global engagement interventions with specific learning objectives that have been mapped to the overall student outcomes for the project. These objectives have also been mapped to the GES and GECS instruments. Finally the faculty members have developed qualitative tools to augment the GES and GECS to identify the global engineering skill sets each intervention is generating. This paper lays the foundation before implementing the interventions and performing their associated assessments over the several subsequent semesters. 
    more » « less
  2. An increasingly global environment expects graduating Engineering students to perform, live and work across cultures. Most intercultural competence research and associated global engineering education is focused on developing the global engineering skill set through long-term travel experiences such as study abroad programs. These programs can be expensive from both a time and money standpoint, limiting the participation to more privileged members of a community, and are not scalable to support broader participation. This work-in-progress addresses this research gap by focusing on the development of the students’ global learner mindset without requiring extensive travel. The project will investigate four different global engagement interventions, including the use of engineering case studies, the intentional formation of multi-national student teams, a Collaborative Online International Learning (COIL) research project, and a community engaged project within a short course. These interventions can be used to develop a holistic global learner mindset and global engineering education approach to foster global competence in undergraduate engineering students. The four global engagement interventions will be grounded in the global engineering competency (GEC) theoretical framework and assessed for their ability to foster a global learner mindset in engineering students. A mixed-methods approach will be used to assess students’ global learner mindset and skill set. This research will use the Global Engagement Survey (GES), the Global Engineering Competency Scale (GECS) and specific questions developed by the researchers to evaluate improvements in the participating students’ global engineering skill set and answer specific research questions including: 1) To what extent can global competence be developed in engineering students through the use of the proposed global engagement interventions; and 2) what are the relative strengths of each of the proposed global engagement interventions in developing global engineering competence? Combined, these research measures will provide both an accurate picture of how each global engagement intervention impacts the formation of a global learner mindset in engineering education, and also its associated ability to develop and/or improve global engineering skills. The outcomes of this study will generate valuable knowledge to understand how each global engagement intervention impacts the formation of global engineering competence. In this work-in-progress study, the authors discuss the four global engagement interventions with specific learning objectives that have been mapped to the overall student outcomes for the project. These objectives have also been mapped to the GES and GECS instruments. Finally the faculty members have developed qualitative tools to augment the GES and GECS to identify the global engineering skill sets each intervention is generating. This paper lays the foundation before implementing the interventions and performing their associated assessments over the several subsequent semesters. 
    more » « less
  3. Student engagement, especially among Engineering and Computer science majors (E/CS), has been a priority for researchers. Although considerable efforts have been made to improve college students' engagement and interest, underrepresented minority groups and first-generation students are still at risk of dropping out of engineering majors due to lack of inclusiveness, motivation, and other related factors. According to Kuh (2008), student participation in High-Impact Educational Practices (HIEP) is correlated with student outcomes such as persistence, performance, achievement, and intent to complete their current major. The present study reviews the existing National Survey of Student Engagement (NSSE, 2012, 2017) data from two western land-grant universities to fully capture participation through the survey of first-year students and seniors (N = 674). The HIEP considered include service-learning, learning communities, research with faculty, internship or field experience, study abroad, and culminating senior experience. These practices are designed to encourage meaningful interactions between faculty and students, foster collaboration with students within different demographics groups, and facilitate learning outside the classroom. Insights were gleaned from how the students interacted with HIEP based on special characteristics such as sex, race, age, enrollment status, and residence. The purpose of the present study is to examine the extent to which E/CS students participate in HIEP and its effects on student outcomes. This study also offers comparisons or possible relationships between student demographics, student success, and HIEP involvement. For example, the participation rates of HIEP on different engineering and computer science majors, including civil, chemical, electrical, mechanical, and materials engineering, etc., are analyzed to examine the practices that work for a particular E/CS major. The present study reports findings from NSSE 2012 and 2017 surveys. Results show that among the E/CS seniors, service-learning, learning community, and study abroad program are the HIEP with the lowest participation rate with 41% (service-learning), 59% (learning community), and 68% (study abroad program), indicating that they do not plan to engage in these practices in their senior year. Conversely, internships and culminating senior experiences had the most participation among E/CS seniors with 52% (internships) and 68% (culminating senior experiences. Interestingly, first-year students showed a significant interest to participate in the following HIEP: internships, study abroad programs, and culminating senior experiences – with 76% (internships), 47% (study abroad program), and 68% (culminating senior experiences) indicating plans to engage in these practices. Finally, findings show that participation or engagement in HIEP is a significant predictor of student learning outcomes. Findings of this review may serve as a guide for future research in E/CS student participation in HIEP. The paper concludes with theoretical and practical implications of the findings on student engagement and learning. Key words: NSSE, high impact educational practices, Engagement 
    more » « less
  4. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses. 
    more » « less
  5. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses. 
    more » « less